mirror of
https://git.codelinaro.org/clo/qsdk/oss/boot/u-boot-2016.git
synced 2025-12-10 07:44:53 +01:00
This change will fix the following compiler warnings for AK and DK targets. 1.Wimplicit-function-declaration 2.Wdiscarded-qualifiers 3.Wstrict-prototypes 4.Wmaybe-uninitialized 5.Wunused-variable 6.Wint-conversion Change-Id: I364904283172ccb19602ae1b6deceb8c61ea7638 Signed-off-by: sameeruddin shaik <samesh@codeaurora.org>
887 lines
20 KiB
C
887 lines
20 KiB
C
/*
|
|
* Copyright (c) 2012-2017 The Linux Foundation. All rights reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 and
|
|
* only version 2 as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*/
|
|
|
|
#include <common.h>
|
|
#include <fdtdec.h>
|
|
#include <watchdog.h>
|
|
#include <console.h>
|
|
#include <spi.h>
|
|
#include <malloc.h>
|
|
#include <asm/io.h>
|
|
#include <asm/errno.h>
|
|
#include "ipq_spi.h"
|
|
#include <asm/arch-qca-common/gpio.h>
|
|
#include <dt-bindings/qcom/gpio-ipq806x.h>
|
|
#define SUCCESS 0
|
|
|
|
#define DUMMY_DATA_VAL 0
|
|
#define TIMEOUT_CNT 100
|
|
#define CS_ASSERT 1
|
|
#define CS_DEASSERT 0
|
|
#define NUM_PORTS 3
|
|
#define NUM_GSBI_PINS 3
|
|
#define TLMM_ARGS 6
|
|
#define NUM_CS 4
|
|
#define GSBI_PIN_IDX 0
|
|
#define FUNC_SEL_IDX 1
|
|
#define GPIO_DIR_IDX 2
|
|
#define PULL_CONF_IDX 3
|
|
#define DRV_STR_IDX 4
|
|
#define GPIO_EN_IDX 5
|
|
|
|
#define GSBI_IDX_TO_GSBI(idx) (idx + 5)
|
|
|
|
DECLARE_GLOBAL_DATA_PTR;
|
|
|
|
/*
|
|
* CS GPIO number array cs_gpio_array[port_num][cs_num]
|
|
* cs_gpio_array[0][x] -- GSBI5
|
|
* cs_gpio_array[1][x] -- GSBI6
|
|
* cs_gpio_array[2][x] -- GSBI7
|
|
*/
|
|
static unsigned int cs_gpio_array[NUM_PORTS][NUM_CS];
|
|
|
|
/*
|
|
* GSBI HCLK state register bit
|
|
* hclk_state[0] -- GSBI5
|
|
* hclk_state[1] -- GSBI6
|
|
* hclk_state[2] -- GSBI7
|
|
*/
|
|
static unsigned int hclk_state[NUM_PORTS] = {
|
|
GSBI5_HCLK,
|
|
GSBI6_HCLK,
|
|
GSBI7_HCLK
|
|
};
|
|
|
|
/*
|
|
* GSBI QUP_APPS_CLK state register bit
|
|
* qup_apps_clk_state[0] -- GSBI5
|
|
* qup_apps_clk_state[1] -- GSBI6
|
|
* qup_apps_clk_state[2] -- GSBI7
|
|
*/
|
|
static unsigned int qup_apps_clk_state[NUM_PORTS] = {
|
|
GSBI5_QUP_APPS_CLK,
|
|
GSBI6_QUP_APPS_CLK,
|
|
GSBI7_QUP_APPS_CLK
|
|
};
|
|
|
|
|
|
static int check_bit_state(uint32_t reg_addr, int bit_num, int val, int us_delay)
|
|
{
|
|
unsigned int count = TIMEOUT_CNT;
|
|
unsigned int bit_val = ((readl(reg_addr) >> bit_num) & 0x01);
|
|
|
|
while (bit_val != val) {
|
|
count--;
|
|
if (count == 0)
|
|
return -ETIMEDOUT;
|
|
udelay(us_delay);
|
|
bit_val = ((readl(reg_addr) >> bit_num) & 0x01);
|
|
}
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Check whether GSBIn_QUP State is valid
|
|
*/
|
|
static int check_qup_state_valid(struct ipq_spi_slave *ds)
|
|
{
|
|
|
|
return check_bit_state(ds->regs->qup_state, QUP_STATE_VALID_BIT,
|
|
QUP_STATE_VALID, 1);
|
|
|
|
}
|
|
|
|
/*
|
|
* Configure GSBIn Core state
|
|
*/
|
|
static int config_spi_state(struct ipq_spi_slave *ds, unsigned int state)
|
|
{
|
|
uint32_t val;
|
|
int ret = SUCCESS;
|
|
|
|
ret = check_qup_state_valid(ds);
|
|
if (ret != SUCCESS)
|
|
return ret;
|
|
|
|
switch (state) {
|
|
case SPI_RUN_STATE:
|
|
/* Set the state to RUN */
|
|
val = ((readl(ds->regs->qup_state) & ~QUP_STATE_MASK)
|
|
| QUP_STATE_RUN_STATE);
|
|
writel(val, ds->regs->qup_state);
|
|
ret = check_qup_state_valid(ds);
|
|
if (ret != SUCCESS)
|
|
return ret;
|
|
ds->core_state = SPI_CORE_RUNNING;
|
|
break;
|
|
case SPI_RESET_STATE:
|
|
/* Set the state to RESET */
|
|
val = ((readl(ds->regs->qup_state) & ~QUP_STATE_MASK)
|
|
| QUP_STATE_RESET_STATE);
|
|
writel(val, ds->regs->qup_state);
|
|
ret = check_qup_state_valid(ds);
|
|
if (ret != SUCCESS)
|
|
return ret;
|
|
ds->core_state = SPI_CORE_RESET;
|
|
break;
|
|
default:
|
|
printf("err: unsupported GSBI SPI state : %d\n", state);
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Set GSBIn SPI Mode
|
|
*/
|
|
static void spi_set_mode(struct ipq_spi_slave *ds, unsigned int mode)
|
|
{
|
|
unsigned int clk_idle_state;
|
|
unsigned int input_first_mode;
|
|
uint32_t val;
|
|
|
|
switch (mode) {
|
|
case GSBI_SPI_MODE_0:
|
|
clk_idle_state = 0;
|
|
input_first_mode = SPI_INPUT_FIRST_MODE;
|
|
break;
|
|
case GSBI_SPI_MODE_1:
|
|
clk_idle_state = 0;
|
|
input_first_mode = 0;
|
|
break;
|
|
case GSBI_SPI_MODE_2:
|
|
clk_idle_state = 1;
|
|
input_first_mode = SPI_INPUT_FIRST_MODE;
|
|
break;
|
|
case GSBI_SPI_MODE_3:
|
|
clk_idle_state = 1;
|
|
input_first_mode = 0;
|
|
break;
|
|
default:
|
|
printf("err : unsupported spi mode : %d\n", mode);
|
|
return;
|
|
}
|
|
|
|
val = readl(ds->regs->spi_config);
|
|
val |= input_first_mode;
|
|
writel(val, ds->regs->spi_config);
|
|
|
|
val = readl(ds->regs->io_control);
|
|
if (clk_idle_state)
|
|
val |= SPI_IO_CONTROL_CLOCK_IDLE_HIGH;
|
|
else
|
|
val &= ~SPI_IO_CONTROL_CLOCK_IDLE_HIGH;
|
|
|
|
writel(val, ds->regs->io_control);
|
|
}
|
|
|
|
/*
|
|
* Check for HCLK state
|
|
*/
|
|
static int check_hclk_state(unsigned int core_num, int enable)
|
|
{
|
|
return check_bit_state(CLK_HALT_CFPB_STATEB_REG,
|
|
hclk_state[core_num], enable, 5);
|
|
}
|
|
|
|
/*
|
|
* Check for QUP APPS CLK state
|
|
*/
|
|
static int check_qup_clk_state(unsigned int core_num, int enable)
|
|
{
|
|
return check_bit_state(CLK_HALT_CFPB_STATEB_REG,
|
|
qup_apps_clk_state[core_num], enable, 5);
|
|
}
|
|
|
|
/*
|
|
* Function to assert and De-assert chip select
|
|
*/
|
|
static void CS_change(int port_num, int cs_num, int enable)
|
|
{
|
|
unsigned int cs_gpio;
|
|
uint32_t addr = 0;
|
|
uint32_t val = 0;
|
|
|
|
cs_gpio = cs_gpio_array[port_num][cs_num];
|
|
|
|
addr = GPIO_IN_OUT_ADDR(cs_gpio);
|
|
val = readl(addr);
|
|
|
|
val &= (~(GPIO_OUT));
|
|
if (!enable)
|
|
val |= (GPIO_OUT);
|
|
writel(val, addr);
|
|
}
|
|
|
|
/*
|
|
* GSBIn TLMM configuration
|
|
*/
|
|
int gsbi_pin_config(unsigned int port_num, int cs_num)
|
|
{
|
|
char spi_node_path[32];
|
|
int spi_node = 0;
|
|
int i,j;
|
|
int spi_cs_node = 0, spi_cs_gpio_node = 0;
|
|
|
|
for (i = 0; i < NUM_PORTS; i++) {
|
|
for (j = 0; j < NUM_CS; j++) {
|
|
sprintf(spi_node_path, "/spi/spi%d/cs%d", i, j);
|
|
spi_cs_node = fdt_path_offset
|
|
(gd->fdt_blob, spi_node_path);
|
|
spi_cs_gpio_node = fdt_first_subnode
|
|
(gd->fdt_blob, spi_cs_node);
|
|
cs_gpio_array[i][j] = fdtdec_get_uint
|
|
(gd->fdt_blob, spi_cs_gpio_node, "gpio", 0);
|
|
}
|
|
}
|
|
|
|
/* Hold the GSBIn (core_num) core in reset */
|
|
clrsetbits_le32(GSBIn_RESET_REG(GSBI_IDX_TO_GSBI(port_num)),
|
|
GSBI1_RESET_MSK, GSBI1_RESET);
|
|
|
|
/*
|
|
* Configure SPI_CLK, SPI_MISO and SPI_MOSI
|
|
*/
|
|
sprintf(spi_node_path, "/spi/spi%d/mosi_miso_clk", port_num);
|
|
spi_node = fdt_path_offset(gd->fdt_blob, spi_node_path);
|
|
if (spi_node >= 0) {
|
|
qca_gpio_init(spi_node);
|
|
} else {
|
|
printf("SPI : Node not found, skipping initialization\n");
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Configure SPI_CS
|
|
*/
|
|
sprintf(spi_node_path, "/spi/spi%d/cs%d", port_num, cs_num);
|
|
spi_node = fdt_path_offset(gd->fdt_blob, spi_node_path);
|
|
if (spi_node >= 0) {
|
|
qca_gpio_init(spi_node);
|
|
} else {
|
|
printf("SPI : Node not found, skipping initialization\n");
|
|
return -1;
|
|
}
|
|
|
|
CS_change(port_num, cs_num, CS_DEASSERT);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Clock configuration for GSBIn Core
|
|
*/
|
|
static int gsbi_clock_init(struct ipq_spi_slave *ds)
|
|
{
|
|
int ret;
|
|
|
|
/* Hold the GSBIn (core_num) core in reset */
|
|
clrsetbits_le32(GSBIn_RESET_REG(GSBI_IDX_TO_GSBI(ds->slave.bus)),
|
|
GSBI1_RESET_MSK, GSBI1_RESET);
|
|
|
|
/* Disable GSBIn (core_num) QUP core clock branch */
|
|
clrsetbits_le32(ds->regs->qup_ns_reg, QUP_CLK_BRANCH_ENA_MSK,
|
|
QUP_CLK_BRANCH_DIS);
|
|
|
|
ret = check_qup_clk_state(ds->slave.bus, 1);
|
|
if (ret) {
|
|
printf("QUP Clock Halt For GSBI%d failed!\n", ds->slave.bus);
|
|
return ret;
|
|
}
|
|
|
|
/* Disable M/N:D counter and hold M/N:D counter in reset */
|
|
clrsetbits_le32(ds->regs->qup_ns_reg, (MNCNTR_MSK | MNCNTR_RST_MSK),
|
|
(MNCNTR_RST_ENA | MNCNTR_DIS));
|
|
|
|
/* Disable GSBIn (core_num) QUP core clock root */
|
|
clrsetbits_le32(ds->regs->qup_ns_reg, CLK_ROOT_ENA_MSK, CLK_ROOT_DIS);
|
|
|
|
clrsetbits_le32(ds->regs->qup_ns_reg, GSBIn_PLL_SRC_MSK,
|
|
GSBIn_PLL_SRC_PLL8);
|
|
clrsetbits_le32(ds->regs->qup_ns_reg, GSBIn_PRE_DIV_SEL_MSK,
|
|
(0 << GSBI_PRE_DIV_SEL_SHFT));
|
|
|
|
/* Program M/N:D values for GSBIn_QUP_APPS_CLK @50MHz */
|
|
clrsetbits_le32(ds->regs->qup_md_reg, GSBIn_M_VAL_MSK,
|
|
(0x01 << GSBI_M_VAL_SHFT));
|
|
clrsetbits_le32(ds->regs->qup_md_reg, GSBIn_D_VAL_MSK,
|
|
(0xF7 << GSBI_D_VAL_SHFT));
|
|
clrsetbits_le32(ds->regs->qup_ns_reg, GSBIn_N_VAL_MSK,
|
|
(0xF8 << GSBI_N_VAL_SHFT));
|
|
|
|
/* Set MNCNTR_MODE = 0: Bypass mode */
|
|
clrsetbits_le32(ds->regs->qup_ns_reg, MNCNTR_MODE_MSK,
|
|
MNCNTR_MODE_DUAL_EDGE);
|
|
|
|
/* De-assert the M/N:D counter reset */
|
|
clrsetbits_le32(ds->regs->qup_ns_reg, MNCNTR_RST_MSK, MNCNTR_RST_DIS);
|
|
clrsetbits_le32(ds->regs->qup_ns_reg, MNCNTR_MSK, MNCNTR_EN);
|
|
|
|
/*
|
|
* Enable the GSBIn (core_num) QUP core clock root.
|
|
* Keep MND counter disabled
|
|
*/
|
|
clrsetbits_le32(ds->regs->qup_ns_reg, CLK_ROOT_ENA_MSK, CLK_ROOT_ENA);
|
|
|
|
/* Enable GSBIn (core_num) QUP core clock branch */
|
|
clrsetbits_le32(ds->regs->qup_ns_reg, QUP_CLK_BRANCH_ENA_MSK,
|
|
QUP_CLK_BRANCH_ENA);
|
|
|
|
ret = check_qup_clk_state(ds->slave.bus, 0);
|
|
if (ret) {
|
|
printf("QUP Clock Enable For GSBI%d"
|
|
" failed!\n", ds->slave.bus);
|
|
return ret;
|
|
}
|
|
|
|
/* Enable GSBIn (core_num) core clock branch */
|
|
clrsetbits_le32(GSBIn_HCLK_CTL_REG(GSBI_IDX_TO_GSBI(ds->slave.bus)),
|
|
GSBI_CLK_BRANCH_ENA_MSK, GSBI_CLK_BRANCH_ENA);
|
|
|
|
ret = check_hclk_state(ds->slave.bus, 0);
|
|
if (ret) {
|
|
printf("HCLK Enable For GSBI%d failed!\n", ds->slave.bus);
|
|
return ret;
|
|
}
|
|
|
|
/* Release GSBIn (core_num) core from reset */
|
|
clrsetbits_le32(GSBIn_RESET_REG(GSBI_IDX_TO_GSBI(ds->slave.bus)),
|
|
GSBI1_RESET_MSK, 0);
|
|
udelay(50);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Reset entire QUP and all mini cores
|
|
*/
|
|
static void spi_reset(struct ipq_spi_slave *ds)
|
|
{
|
|
writel(0x1, ds->regs->qup_sw_reset);
|
|
udelay(5);
|
|
}
|
|
|
|
void spi_init()
|
|
{
|
|
/* do nothing */
|
|
|
|
}
|
|
|
|
struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
|
|
unsigned int max_hz, unsigned int mode)
|
|
{
|
|
struct ipq_spi_slave *ds;
|
|
|
|
ds = malloc(sizeof(struct ipq_spi_slave));
|
|
if (!ds) {
|
|
printf("SPI error: malloc of SPI structure failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* IPQ GSBI (Generic Serial Bus Interface) supports SPI Flash
|
|
* on different GSBI5, GSBI6 and GSBI7
|
|
* with different number of chip selects (CS, channels):
|
|
*/
|
|
if ((bus < GSBI5_SPI) || (bus > GSBI7_SPI)
|
|
|| ((bus == GSBI5_SPI) && (cs > 3))
|
|
|| ((bus == GSBI6_SPI) && (cs > 0))
|
|
|| ((bus == GSBI7_SPI) && (cs > 0))) {
|
|
printf("SPI error: unsupported bus %d "
|
|
"(Supported busses 0,1 and 2) or chipselect\n", bus);
|
|
goto err;
|
|
}
|
|
ds->slave.bus = bus;
|
|
ds->slave.cs = cs;
|
|
ds->slave.option = 0;
|
|
ds->slave.max_write_size = 0;
|
|
ds->slave.op_mode_rx = 0; /* Default Rx Mode: CMD_READ_ARRAY_FAST */
|
|
ds->slave.op_mode_tx = 0; /* Default Tx Mode: CMD_PAGE_PROGRAM */
|
|
ds->slave.memory_map = NULL; /* Not memory mapped */
|
|
|
|
ds->regs = &spi_reg[bus];
|
|
|
|
/* TODO For different clock frequency */
|
|
if (max_hz > MSM_GSBI_MAX_FREQ) {
|
|
printf("SPI error: unsupported frequency %d Hz "
|
|
"Max frequency is %d Hz\n", max_hz, MSM_GSBI_MAX_FREQ);
|
|
goto err;
|
|
}
|
|
ds->freq = max_hz;
|
|
|
|
if (mode > GSBI_SPI_MODE_3) {
|
|
printf("SPI error: unsupported SPI mode %d\n", mode);
|
|
goto err;
|
|
}
|
|
ds->mode = mode;
|
|
|
|
if(gsbi_clock_init(ds)){
|
|
printf("SPI Clock config Failed for Bus %d CS %d\n", bus, cs);
|
|
goto err;
|
|
}
|
|
|
|
return &ds->slave;
|
|
|
|
err:
|
|
free(ds);
|
|
return NULL;
|
|
}
|
|
|
|
void spi_free_slave(struct spi_slave *slave)
|
|
{
|
|
struct ipq_spi_slave *ds = to_ipq_spi(slave);
|
|
|
|
if (ds != NULL)
|
|
free(ds);
|
|
}
|
|
|
|
/*
|
|
* GSBIn SPI Hardware Initialisation
|
|
*/
|
|
static int spi_hw_init(struct ipq_spi_slave *ds)
|
|
{
|
|
int ret;
|
|
|
|
ds->initialized = 0;
|
|
|
|
/* GSBI module configuration */
|
|
spi_reset(ds);
|
|
|
|
/* Set the GSBIn QUP state */
|
|
ret = config_spi_state(ds, SPI_RESET_STATE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Configure GSBI_CTRL register to set protocol_mode to SPI:011 */
|
|
clrsetbits_le32(ds->regs->gsbi_ctrl, PROTOCOL_CODE_MSK,
|
|
PROTOCOL_CODE_SPI);
|
|
|
|
/*
|
|
* Configure Mini core to SPI core with Input Output enabled,
|
|
* SPI master, N = 8 bits
|
|
*/
|
|
clrsetbits_le32(ds->regs->qup_config, (QUP_CONFIG_MINI_CORE_MSK |
|
|
SPI_QUP_CONF_INPUT_MSK |
|
|
SPI_QUP_CONF_OUTPUT_MSK |
|
|
SPI_BIT_WORD_MSK),
|
|
(QUP_CONFIG_MINI_CORE_SPI |
|
|
SPI_QUP_CONF_INPUT_ENA |
|
|
SPI_QUP_CONF_OUTPUT_ENA |
|
|
SPI_8_BIT_WORD));
|
|
|
|
/*
|
|
* Configure Input first SPI protocol,
|
|
* SPI master mode and no loopback
|
|
*/
|
|
clrsetbits_le32(ds->regs->spi_config, (LOOP_BACK_MSK |
|
|
SLAVE_OPERATION_MSK),
|
|
(NO_LOOP_BACK |
|
|
SLAVE_OPERATION));
|
|
|
|
/*
|
|
* Configure SPI IO Control Register
|
|
* CLK_ALWAYS_ON = 0
|
|
* MX_CS_MODE = 0
|
|
* NO_TRI_STATE = 1
|
|
*/
|
|
writel((CLK_ALWAYS_ON | MX_CS_MODE | NO_TRI_STATE),
|
|
ds->regs->io_control);
|
|
|
|
/*
|
|
* Configure SPI IO Modes.
|
|
* OUTPUT_BIT_SHIFT_EN = 1
|
|
* INPUT_MODE = Block Mode
|
|
* OUTPUT MODE = Block Mode
|
|
*/
|
|
clrsetbits_le32(ds->regs->qup_io_modes, (OUTPUT_BIT_SHIFT_MSK |
|
|
INPUT_BLOCK_MODE_MSK |
|
|
OUTPUT_BLOCK_MODE_MSK),
|
|
(OUTPUT_BIT_SHIFT_EN |
|
|
INPUT_BLOCK_MODE |
|
|
OUTPUT_BLOCK_MODE));
|
|
|
|
spi_set_mode(ds, ds->mode);
|
|
|
|
/* Disable Error mask */
|
|
writel(0, ds->regs->error_flags_en);
|
|
writel(0, ds->regs->qup_error_flags_en);
|
|
|
|
ds->initialized = 1;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
int spi_claim_bus(struct spi_slave *slave)
|
|
{
|
|
struct ipq_spi_slave *ds = to_ipq_spi(slave);
|
|
unsigned int ret;
|
|
|
|
ret = spi_hw_init(ds);
|
|
if (ret)
|
|
return -EIO;
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
void spi_release_bus(struct spi_slave *slave)
|
|
{
|
|
struct ipq_spi_slave *ds = to_ipq_spi(slave);
|
|
|
|
/* Reset the SPI hardware */
|
|
spi_reset(ds);
|
|
ds->initialized = 0;
|
|
}
|
|
|
|
/* Drain input fifo
|
|
* If input fifo is not empty drain the input FIFO. When the
|
|
* input fifo is drained make sure that the output fifo is also
|
|
* empty and break when the input fifo is completely drained.
|
|
*/
|
|
static void flush_fifos(struct ipq_spi_slave *ds)
|
|
{
|
|
unsigned int fifo_data;
|
|
|
|
while (1) {
|
|
if (readl(ds->regs->qup_operational) &
|
|
QUP_DATA_AVAILABLE_FOR_READ) {
|
|
fifo_data = readl(ds->regs->qup_input_fifo);
|
|
} else {
|
|
if (!(readl(ds->regs->qup_operational) &
|
|
QUP_OUTPUT_FIFO_NOT_EMPTY)) {
|
|
if (!(readl(ds->regs->qup_operational) &
|
|
QUP_DATA_AVAILABLE_FOR_READ))
|
|
break;
|
|
}
|
|
}
|
|
WATCHDOG_RESET();
|
|
}
|
|
|
|
(void)fifo_data;
|
|
}
|
|
|
|
/*
|
|
* Function to write data to OUTPUT FIFO
|
|
*/
|
|
static void spi_write_byte(struct ipq_spi_slave *ds, unsigned char data)
|
|
{
|
|
/* Wait for space in the FIFO */
|
|
while ((readl(ds->regs->qup_operational) & QUP_OUTPUT_FIFO_FULL))
|
|
udelay(1);
|
|
|
|
/* Write the byte of data */
|
|
writel(data, ds->regs->qup_output_fifo);
|
|
}
|
|
|
|
/*
|
|
* Function to read data from Input FIFO
|
|
*/
|
|
static unsigned char spi_read_byte(struct ipq_spi_slave *ds)
|
|
{
|
|
/* Wait for Data in FIFO */
|
|
while (!(readl(ds->regs->qup_operational) &
|
|
QUP_DATA_AVAILABLE_FOR_READ)) {
|
|
udelay(1);
|
|
}
|
|
|
|
/* Read a byte of data */
|
|
return readl(ds->regs->qup_input_fifo) & 0xff;
|
|
}
|
|
|
|
/*
|
|
* Function to check wheather Input or Output FIFO
|
|
* has data to be serviced
|
|
*/
|
|
static int check_fifo_status(uint32_t reg_addr)
|
|
{
|
|
unsigned int count = TIMEOUT_CNT;
|
|
unsigned int status_flag;
|
|
unsigned int val;
|
|
|
|
do {
|
|
val = readl(reg_addr);
|
|
count--;
|
|
if (count == 0)
|
|
return -ETIMEDOUT;
|
|
status_flag = ((val & OUTPUT_SERVICE_FLAG) | (val & INPUT_SERVICE_FLAG));
|
|
} while (!status_flag);
|
|
|
|
return SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Function to read bytes number of data from the Input FIFO
|
|
*/
|
|
static int gsbi_spi_read(struct ipq_spi_slave *ds, u8 *data_buffer,
|
|
unsigned int bytes, unsigned long flags)
|
|
{
|
|
uint32_t val;
|
|
unsigned int i;
|
|
unsigned int read_bytes = bytes;
|
|
unsigned int fifo_count;
|
|
int ret = SUCCESS;
|
|
int state_config;
|
|
|
|
if (flags & SPI_XFER_BEGIN) {
|
|
/* Assert chip select */
|
|
CS_change(ds->slave.bus, ds->slave.cs, CS_ASSERT);
|
|
}
|
|
|
|
/* Configure no of bytes to read */
|
|
state_config = config_spi_state(ds, SPI_RESET_STATE);
|
|
if (state_config)
|
|
return state_config;
|
|
|
|
/*
|
|
* A count of zero implies read data as long as clock is
|
|
* supplied. So configure it with zero and read as much
|
|
* data as we want. This also helps us while reading data
|
|
* that is not aligned to sector address and/or length.
|
|
*/
|
|
writel(0, ds->regs->qup_mx_output_count);
|
|
writel(0, ds->regs->qup_mx_input_count);
|
|
|
|
state_config = config_spi_state(ds, SPI_RUN_STATE);
|
|
if (state_config)
|
|
return state_config;
|
|
|
|
while (read_bytes) {
|
|
|
|
ret = check_fifo_status(ds->regs->qup_operational);
|
|
if (ret != SUCCESS)
|
|
goto out;
|
|
|
|
val = readl(ds->regs->qup_operational);
|
|
if (val & INPUT_SERVICE_FLAG) {
|
|
/*
|
|
* acknowledge to hw that software will
|
|
* read input data
|
|
*/
|
|
val &= INPUT_SERVICE_FLAG;
|
|
writel(val, ds->regs->qup_operational);
|
|
|
|
fifo_count = ((read_bytes > SPI_INPUT_BLOCK_SIZE) ?
|
|
SPI_INPUT_BLOCK_SIZE : read_bytes);
|
|
|
|
for (i = 0; i < fifo_count; i++) {
|
|
if (ctrlc()) {
|
|
putc ('\n');
|
|
return 1;
|
|
}
|
|
*data_buffer = spi_read_byte(ds);
|
|
data_buffer++;
|
|
read_bytes--;
|
|
}
|
|
}
|
|
|
|
if (val & OUTPUT_SERVICE_FLAG) {
|
|
/*
|
|
* acknowledge to hw that software will
|
|
* write output data
|
|
*/
|
|
val &= OUTPUT_SERVICE_FLAG;
|
|
writel(val, ds->regs->qup_operational);
|
|
|
|
fifo_count = ((read_bytes > SPI_OUTPUT_BLOCK_SIZE) ?
|
|
SPI_OUTPUT_BLOCK_SIZE : read_bytes);
|
|
|
|
for (i = 0; i < fifo_count; i++) {
|
|
if (ctrlc()) {
|
|
putc ('\n');
|
|
return 1;
|
|
}
|
|
/*
|
|
* Write dummy data byte for the device
|
|
* to shift in actual data. Most of the SPI devices
|
|
* accepts dummy data value as 0. In case of any
|
|
* other value change DUMMY_DATA_VAL.
|
|
*/
|
|
spi_write_byte(ds, DUMMY_DATA_VAL);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (flags & SPI_XFER_END) {
|
|
flush_fifos(ds);
|
|
goto out;
|
|
}
|
|
|
|
return ret;
|
|
|
|
out:
|
|
/* Deassert CS */
|
|
CS_change(ds->slave.bus, ds->slave.cs, CS_DEASSERT);
|
|
|
|
/*
|
|
* Put the SPI Core back in the Reset State
|
|
* to end the transfer
|
|
*/
|
|
(void)config_spi_state(ds, SPI_RESET_STATE);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
/*
|
|
* Function to write data to the Output FIFO
|
|
*/
|
|
static int gsbi_spi_write(struct ipq_spi_slave *ds, const u8 *cmd_buffer,
|
|
unsigned int bytes, unsigned long flags)
|
|
{
|
|
uint32_t val;
|
|
unsigned int i;
|
|
unsigned int write_len = bytes;
|
|
unsigned int read_len = bytes;
|
|
unsigned int fifo_count;
|
|
int ret = SUCCESS;
|
|
int state_config;
|
|
|
|
if (flags & SPI_XFER_BEGIN) {
|
|
/* Select the chip select */
|
|
CS_change(ds->slave.bus, ds->slave.cs, CS_ASSERT);
|
|
}
|
|
|
|
state_config = config_spi_state(ds, SPI_RESET_STATE);
|
|
if (state_config)
|
|
return state_config;
|
|
|
|
/* No of bytes to be written in Output FIFO */
|
|
writel(bytes, ds->regs->qup_mx_output_count);
|
|
writel(bytes, ds->regs->qup_mx_input_count);
|
|
state_config = config_spi_state(ds, SPI_RUN_STATE);
|
|
if (state_config)
|
|
return state_config;
|
|
|
|
/*
|
|
* read_len considered to ensure that we read the dummy data for the
|
|
* write we performed. This is needed to ensure with WR-RD transaction
|
|
* to get the actual data on the subsequent read cycle that happens
|
|
*/
|
|
while (write_len || read_len) {
|
|
|
|
ret = check_fifo_status(ds->regs->qup_operational);
|
|
if (ret != SUCCESS)
|
|
goto out;
|
|
|
|
val = readl(ds->regs->qup_operational);
|
|
if (val & OUTPUT_SERVICE_FLAG) {
|
|
/*
|
|
* acknowledge to hw that software will write
|
|
* expected output data
|
|
*/
|
|
val &= OUTPUT_SERVICE_FLAG;
|
|
writel(val, ds->regs->qup_operational);
|
|
|
|
if (write_len > SPI_OUTPUT_BLOCK_SIZE)
|
|
fifo_count = SPI_OUTPUT_BLOCK_SIZE;
|
|
else
|
|
fifo_count = write_len;
|
|
|
|
for (i = 0; i < fifo_count; i++) {
|
|
/* Write actual data to output FIFO */
|
|
if (ctrlc()) {
|
|
putc ('\n');
|
|
return 1;
|
|
}
|
|
spi_write_byte(ds, *cmd_buffer);
|
|
cmd_buffer++;
|
|
write_len--;
|
|
}
|
|
}
|
|
if (val & INPUT_SERVICE_FLAG) {
|
|
/*
|
|
* acknowledge to hw that software
|
|
* will read input data
|
|
*/
|
|
val &= INPUT_SERVICE_FLAG;
|
|
writel(val, ds->regs->qup_operational);
|
|
|
|
if (read_len > SPI_INPUT_BLOCK_SIZE)
|
|
fifo_count = SPI_INPUT_BLOCK_SIZE;
|
|
else
|
|
fifo_count = read_len;
|
|
|
|
for (i = 0; i < fifo_count; i++) {
|
|
if (ctrlc()) {
|
|
putc ('\n');
|
|
return 1;
|
|
}
|
|
/* Read dummy data for the data written */
|
|
(void)spi_read_byte(ds);
|
|
|
|
/* Decrement the write count after reading the dummy data
|
|
* from the device. This is to make sure we read dummy data
|
|
* before we write the data to fifo
|
|
*/
|
|
read_len--;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (flags & SPI_XFER_END) {
|
|
flush_fifos(ds);
|
|
goto out;
|
|
}
|
|
|
|
return ret;
|
|
|
|
out:
|
|
/* Deassert CS */
|
|
CS_change(ds->slave.bus, ds->slave.cs, CS_DEASSERT);
|
|
|
|
/*
|
|
* Put the SPI Core back in the Reset State
|
|
* to end the transfer
|
|
*/
|
|
(void)config_spi_state(ds, SPI_RESET_STATE);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This function is invoked with either tx_buf or rx_buf.
|
|
* Calling this function with both null does a chip select change.
|
|
*/
|
|
int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
|
|
const void *dout, void *din, unsigned long flags)
|
|
{
|
|
struct ipq_spi_slave *ds = to_ipq_spi(slave);
|
|
unsigned int len;
|
|
const u8 *txp = dout;
|
|
u8 *rxp = din;
|
|
int ret;
|
|
|
|
if (bitlen & 0x07) {
|
|
printf("err : Invalid bit length");
|
|
return -EINVAL;
|
|
}
|
|
|
|
len = bitlen >> 3;
|
|
|
|
if (dout != NULL) {
|
|
ret = gsbi_spi_write(ds, txp, len, flags);
|
|
if (ret != SUCCESS)
|
|
return ret;
|
|
}
|
|
|
|
if (din != NULL)
|
|
return gsbi_spi_read(ds, rxp, len, flags);
|
|
|
|
if ((din == NULL) && (dout == NULL))
|
|
/* To handle only when chip select change is needed */
|
|
ret = gsbi_spi_write(ds, NULL, 0, flags);
|
|
|
|
return ret;
|
|
}
|