Hardware specifications:
- CPU: Freescale/NXP P2020, dual-core PowerPC @ 1 GHz
- RAM: 1 GB DDR3
- Flash: 2 MB NOR, 512 MB NAND
- Networking: 7x Gigabit Ethernet ports (via two Marvell 88E6171
switches, each attached to a different MAC)
- USB: 2x USB 2.0 ports (front panel)
- mini-PCIe slot
- RTC: Ricoh RS5C372A
- 4 buttons (via external MCU)
- 3 LEDs (via external MCU)
- LCD display (via external MCU)
Installation procedure:
1. Obtain the original MAC address table from the stock bootlog, for
example:
setting device eth0 to 00:90:7f:00:00:01
setting device eth1 to 00:90:7f:00:00:02
setting device eth2 to 00:90:7f:00:00:03
setting device eth3 to 00:90:7f:00:00:04
setting device eth4 to 00:90:7f:00:00:05
setting device eth5 to 00:90:7f:00:00:06
setting device eth6 to 00:90:7f:00:00:07
2. Open the case and move jumper JP1 from 2-3 to 1-2 to enter FAILSAFE
mode.
3. Power on the device and interrupt the boot process to access the U-Boot
shell.
4. Program the MAC base address into the EEPROM (text after '#' is a
comment):
mac ports 3
mac 2 00:90:7f:00:00:01 # first MAC address from bootlog
mac save
5. Reset the device and enter the U-Boot console again.
6. Connect a TFTP server to port 6 and boot the initramfs image:
setenv ipaddr 192.168.1.3
setenv serverip 192.168.1.2
setenv loadaddr 1000000
tftpboot $loadaddr openwrt-mpc85xx-p2020-watchguard_xtm330-initramfs-kernel.bin
bootm $loadaddr
7. (Optional) Backup all MTD partitions if you want the ability to restore
stock firmware.
8. Perform a normal sysupgrade from the initramfs environment.
9. Power off the device and move jumper JP1 back to 2-3.
10. The device will now boot OpenWrt.
Known issues:
- LCD, buttons and LEDs are controlled by an external MCU; the protocol is
currently unknown.
- The internal connection between the two Marvell switches is unused by
OpenWrt.
- The stock firmware uses an empty U-Boot environment; saving variables
modifies the environment and prevents a normal boot. FAILSAFE U-Boot
remains functional.
- WatchGuard configuration is encrypted; DSA MAC addresses are stored in
this configuration.
- Failsafe Ethernet works on port1.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/21020
(cherry picked from commit
|
||
|---|---|---|
| .devcontainer/ci-env | ||
| .github | ||
| .vscode | ||
| config | ||
| include | ||
| LICENSES | ||
| package | ||
| scripts | ||
| target | ||
| toolchain | ||
| tools | ||
| .gitattributes | ||
| .gitignore | ||
| BSDmakefile | ||
| Config.in | ||
| COPYING | ||
| feeds.conf.default | ||
| Makefile | ||
| README.md | ||
| rules.mk | ||
OpenWrt Project is a Linux operating system targeting embedded devices. Instead of trying to create a single, static firmware, OpenWrt provides a fully writable filesystem with package management. This frees you from the application selection and configuration provided by the vendor and allows you to customize the device through the use of packages to suit any application. For developers, OpenWrt is the framework to build an application without having to build a complete firmware around it; for users this means the ability for full customization, to use the device in ways never envisioned.
Sunshine!
Download
Built firmware images are available for many architectures and come with a package selection to be used as WiFi home router. To quickly find a factory image usable to migrate from a vendor stock firmware to OpenWrt, try the Firmware Selector.
If your device is supported, please follow the Info link to see install instructions or consult the support resources listed below.
An advanced user may require additional or specific package. (Toolchain, SDK, ...) For everything else than simple firmware download, try the wiki download page:
Development
To build your own firmware you need a GNU/Linux, BSD or macOS system (case sensitive filesystem required). Cygwin is unsupported because of the lack of a case sensitive file system.
Requirements
You need the following tools to compile OpenWrt, the package names vary between distributions. A complete list with distribution specific packages is found in the Build System Setup documentation.
binutils bzip2 diff find flex gawk gcc-6+ getopt grep install libc-dev libz-dev
make4.1+ perl python3.7+ rsync subversion unzip which
Quickstart
-
Run
./scripts/feeds update -ato obtain all the latest package definitions defined in feeds.conf / feeds.conf.default -
Run
./scripts/feeds install -ato install symlinks for all obtained packages into package/feeds/ -
Run
make menuconfigto select your preferred configuration for the toolchain, target system & firmware packages. -
Run
maketo build your firmware. This will download all sources, build the cross-compile toolchain and then cross-compile the GNU/Linux kernel & all chosen applications for your target system.
Related Repositories
The main repository uses multiple sub-repositories to manage packages of
different categories. All packages are installed via the OpenWrt package
manager called opkg. If you're looking to develop the web interface or port
packages to OpenWrt, please find the fitting repository below.
-
LuCI Web Interface: Modern and modular interface to control the device via a web browser.
-
OpenWrt Packages: Community repository of ported packages.
-
OpenWrt Routing: Packages specifically focused on (mesh) routing.
-
OpenWrt Video: Packages specifically focused on display servers and clients (Xorg and Wayland).
Support Information
For a list of supported devices see the OpenWrt Hardware Database
Documentation
Support Community
- Forum: For usage, projects, discussions and hardware advise.
- Support Chat: Channel
#openwrton oftc.net.
Developer Community
- Bug Reports: Report bugs in OpenWrt
- Dev Mailing List: Send patches
- Dev Chat: Channel
#openwrt-develon oftc.net.
License
OpenWrt is licensed under GPL-2.0
