/* * Copyright (c) 2012-2017, The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted (subject to the limitations in the * disclaimer below) provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * * Neither the name of [Owner Organization] nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE * GRANTED BY THIS LICENSE. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT * HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE * GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER * IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include DECLARE_GLOBAL_DATA_PTR; extern void qca_serial_init(struct ipq_serial_platdata *pdata); struct ipq_serial_platdata uart2; #define FIFO_DATA_SIZE 4 static unsigned int msm_boot_uart_dm_init(unsigned long uart_dm_base); /* Received data is valid or not */ static int valid_data = 0; static int uart_valid_data = 0; /* Received data */ static unsigned int word = 0; static unsigned int uart_word = 0; static unsigned int current_baud_rate = 0; /** * msm_boot_uart_dm_init_rx_transfer - Init Rx transfer * @uart_dm_base: UART controller base address */ static unsigned int msm_boot_uart_dm_init_rx_transfer(unsigned long uart_dm_base) { /* Reset receiver */ writel(MSM_BOOT_UART_DM_CMD_RESET_RX, MSM_BOOT_UART_DM_CR(uart_dm_base)); /* Enable receiver */ writel(MSM_BOOT_UART_DM_CR_RX_ENABLE, MSM_BOOT_UART_DM_CR(uart_dm_base)); writel(MSM_BOOT_UART_DM_DMRX_DEF_VALUE, MSM_BOOT_UART_DM_DMRX(uart_dm_base)); /* Clear stale event */ writel(MSM_BOOT_UART_DM_CMD_RES_STALE_INT, MSM_BOOT_UART_DM_CR(uart_dm_base)); /* Enable stale event */ writel(MSM_BOOT_UART_DM_GCMD_ENA_STALE_EVT, MSM_BOOT_UART_DM_CR(uart_dm_base)); return MSM_BOOT_UART_DM_E_SUCCESS; } /** * msm_boot_uart_dm_read - reads a word from the RX FIFO. * @data: location where the read data is stored * @count: no of valid data in the FIFO * @wait: indicates blocking call or not blocking call * * Reads a word from the RX FIFO. If no data is available blocks if * @wait is true, else returns %MSM_BOOT_UART_DM_E_RX_NOT_READY. */ static unsigned int msm_boot_uart_dm_read(unsigned int *data, int *count, int wait, unsigned long base) { static int total_rx_data = 0; static int rx_data_read = 0; uint32_t status_reg; if (data == NULL) return MSM_BOOT_UART_DM_E_INVAL; status_reg = readl(MSM_BOOT_UART_DM_MISR(base)); /* Check for DM_RXSTALE for RX transfer to finish */ while (!(status_reg & MSM_BOOT_UART_DM_RXSTALE)) { status_reg = readl(MSM_BOOT_UART_DM_MISR(base)); if (!wait) return MSM_BOOT_UART_DM_E_RX_NOT_READY; } /* Check for Overrun error. We'll just reset Error Status */ if (readl(MSM_BOOT_UART_DM_SR(base)) & MSM_BOOT_UART_DM_SR_UART_OVERRUN) { writel(MSM_BOOT_UART_DM_CMD_RESET_ERR_STAT, MSM_BOOT_UART_DM_CR(base)); total_rx_data = rx_data_read = 0; msm_boot_uart_dm_init(base); return MSM_BOOT_UART_DM_E_RX_NOT_READY; } /* Read UART_DM_RX_TOTAL_SNAP for actual number of bytes received */ if (total_rx_data == 0) total_rx_data = readl(MSM_BOOT_UART_DM_RX_TOTAL_SNAP(base)); /* Data available in FIFO; read a word. */ *data = readl(MSM_BOOT_UART_DM_RF(base, 0)); /* WAR for http://prism/CR/548280 */ if (*data == 0) { return MSM_BOOT_UART_DM_E_RX_NOT_READY; } /* increment the total count of chars we've read so far */ rx_data_read += FIFO_DATA_SIZE; /* actual count of valid data in word */ *count = ((total_rx_data < rx_data_read) ? (FIFO_DATA_SIZE - (rx_data_read - total_rx_data)) : FIFO_DATA_SIZE); /* If there are still data left in FIFO we'll read them before * initializing RX Transfer again */ if (rx_data_read < total_rx_data) return MSM_BOOT_UART_DM_E_SUCCESS; msm_boot_uart_dm_init_rx_transfer(base); total_rx_data = rx_data_read = 0; return MSM_BOOT_UART_DM_E_SUCCESS; } /** * msm_boot_uart_replace_lr_with_cr - replaces "\n" with "\r\n" * @data_in: characters to be converted * @num_of_chars: no. of characters * @data_out: location where converted chars are stored * * Replace linefeed char "\n" with carriage return + linefeed * "\r\n". Currently keeping it simple than efficient. */ static unsigned int msm_boot_uart_replace_lr_with_cr(const char *data_in, int num_of_chars, char *data_out, int *num_of_chars_out) { int i = 0, j = 0; if ((data_in == NULL) || (data_out == NULL) || (num_of_chars < 0)) return MSM_BOOT_UART_DM_E_INVAL; for (i = 0, j = 0; i < num_of_chars; i++, j++) { if (data_in[i] == '\n') data_out[j++] = '\r'; data_out[j] = data_in[i]; } *num_of_chars_out = j; return MSM_BOOT_UART_DM_E_SUCCESS; } /** * msm_boot_uart_dm_write - transmit data * @data: data to transmit * @num_of_chars: no. of bytes to transmit * * Writes the data to the TX FIFO. If no space is available blocks * till space becomes available. */ static unsigned int msm_boot_uart_dm_write(const char *data, unsigned int num_of_chars, unsigned long base) { unsigned int tx_word_count = 0; unsigned int tx_char_left = 0, tx_char = 0; unsigned int tx_word = 0; int i = 0; char *tx_data = NULL; char new_data[1024]; if ((data == NULL) || (num_of_chars <= 0)) return MSM_BOOT_UART_DM_E_INVAL; /* Replace line-feed (/n) with carriage-return + line-feed (/r/n) */ msm_boot_uart_replace_lr_with_cr(data, num_of_chars, new_data, &i); tx_data = new_data; num_of_chars = i; /* Write to NO_CHARS_FOR_TX register number of characters * to be transmitted. However, before writing TX_FIFO must * be empty as indicated by TX_READY interrupt in IMR register */ /* Check if transmit FIFO is empty. * If not we'll wait for TX_READY interrupt. */ if (!(readl(MSM_BOOT_UART_DM_SR(base)) & MSM_BOOT_UART_DM_SR_TXEMT)) { while (!(readl(MSM_BOOT_UART_DM_ISR(base)) & MSM_BOOT_UART_DM_TX_READY)) __udelay(1); } /* We are here. FIFO is ready to be written. */ /* Write number of characters to be written */ writel(num_of_chars, MSM_BOOT_UART_DM_NO_CHARS_FOR_TX(base)); /* Clear TX_READY interrupt */ writel(MSM_BOOT_UART_DM_GCMD_RES_TX_RDY_INT, MSM_BOOT_UART_DM_CR(base)); /* We use four-character word FIFO. So we need to divide data into * four characters and write in UART_DM_TF register */ tx_word_count = (num_of_chars % 4) ? ((num_of_chars / 4) + 1) : (num_of_chars / 4); tx_char_left = num_of_chars; for (i = 0; i < (int)tx_word_count; i++) { tx_char = (tx_char_left < 4) ? tx_char_left : 4; PACK_CHARS_INTO_WORDS(tx_data, tx_char, tx_word); /* Wait till TX FIFO has space */ while (!(readl(MSM_BOOT_UART_DM_SR(base)) & MSM_BOOT_UART_DM_SR_TXRDY)) __udelay(1); /* TX FIFO has space. Write the chars */ writel(tx_word, MSM_BOOT_UART_DM_TF(base, 0)); tx_char_left = num_of_chars - (i + 1) * 4; tx_data = tx_data + 4; } return MSM_BOOT_UART_DM_E_SUCCESS; } /* * msm_boot_uart_dm_reset - resets UART controller * @base: UART controller base address */ static unsigned int msm_boot_uart_dm_reset(unsigned long base) { writel(MSM_BOOT_UART_DM_CMD_RESET_RX, MSM_BOOT_UART_DM_CR(base)); writel(MSM_BOOT_UART_DM_CMD_RESET_TX, MSM_BOOT_UART_DM_CR(base)); writel(MSM_BOOT_UART_DM_CMD_RESET_ERR_STAT, MSM_BOOT_UART_DM_CR(base)); writel(MSM_BOOT_UART_DM_CMD_RES_TX_ERR, MSM_BOOT_UART_DM_CR(base)); writel(MSM_BOOT_UART_DM_CMD_RES_STALE_INT, MSM_BOOT_UART_DM_CR(base)); return MSM_BOOT_UART_DM_E_SUCCESS; } /* * msm_boot_uart_dm_init - initilaizes UART controller * @uart_dm_base: UART controller base address */ static unsigned int msm_boot_uart_dm_init(unsigned long uart_dm_base) { /* Configure UART mode registers MR1 and MR2 */ /* Hardware flow control isn't supported */ writel(0x0, MSM_BOOT_UART_DM_MR1(uart_dm_base)); /* 8-N-1 configuration: 8 data bits - No parity - 1 stop bit */ writel(MSM_BOOT_UART_DM_8_N_1_MODE, MSM_BOOT_UART_DM_MR2(uart_dm_base)); /* Configure Interrupt Mask register IMR */ writel(MSM_BOOT_UART_DM_IMR_ENABLED, MSM_BOOT_UART_DM_IMR(uart_dm_base)); /* * Configure Tx and Rx watermarks configuration registers * TX watermark value is set to 0 - interrupt is generated when * FIFO level is less than or equal to 0 */ writel(MSM_BOOT_UART_DM_TFW_VALUE, MSM_BOOT_UART_DM_TFWR(uart_dm_base)); /* RX watermark value */ writel(MSM_BOOT_UART_DM_RFW_VALUE, MSM_BOOT_UART_DM_RFWR(uart_dm_base)); /* Configure Interrupt Programming Register */ /* Set initial Stale timeout value */ writel(MSM_BOOT_UART_DM_STALE_TIMEOUT_LSB, MSM_BOOT_UART_DM_IPR(uart_dm_base)); /* Configure IRDA if required */ /* Disabling IRDA mode */ writel(0x0, MSM_BOOT_UART_DM_IRDA(uart_dm_base)); /* Configure hunt character value in HCR register */ /* Keep it in reset state */ writel(0x0, MSM_BOOT_UART_DM_HCR(uart_dm_base)); /* * Configure Rx FIFO base address * Both TX/RX shares same SRAM and default is half-n-half. * Sticking with default value now. * As such RAM size is (2^RAM_ADDR_WIDTH, 32-bit entries). * We have found RAM_ADDR_WIDTH = 0x7f */ /* Issue soft reset command */ msm_boot_uart_dm_reset(uart_dm_base); /* Enable/Disable Rx/Tx DM interfaces */ /* Data Mover not currently utilized. */ writel(0x0, MSM_BOOT_UART_DM_DMEN(uart_dm_base)); /* Enable transmitter */ writel(MSM_BOOT_UART_DM_CR_TX_ENABLE, MSM_BOOT_UART_DM_CR(uart_dm_base)); /* Initialize Receive Path */ msm_boot_uart_dm_init_rx_transfer(uart_dm_base); return 0; } /** * uart_dm_init - initializes UART * * Initializes clocks, GPIO and UART controller. */ static void ipq_serial_init(struct ipq_serial_platdata *plat, unsigned long base) { qca_serial_init(plat); writel(plat->bit_rate, MSM_BOOT_UART_DM_CSR(base)); /* Intialize UART_DM */ msm_boot_uart_dm_init(base); } /** * ipq_serial_wait_tx_empty - Wait until TX FIFO is empty */ void ipq_serial_wait_tx_empty(void) { struct udevice *dev = gd->cur_serial_dev; struct ipq_serial_platdata *plat = dev->platdata; unsigned long base = plat->reg_base; while (!(readl(MSM_BOOT_UART_DM_SR(base)) & MSM_BOOT_UART_DM_SR_TXEMT)) __udelay(1); } /** * serial_tstc - checks if data available for reading * * Returns 1 if data available, 0 otherwise */ static int ipq_serial_pending(struct udevice *dev, bool input) { struct ipq_serial_platdata *plat = dev->platdata; unsigned long base = plat->reg_base; /* Return if data is already read */ if (valid_data) return 1; /* Read data from the FIFO */ if (msm_boot_uart_dm_read(&word, &valid_data, 0, base) != MSM_BOOT_UART_DM_E_SUCCESS) return 0; return 1; } /** * serial_getc - reads a character * * Returns the character read from serial port. */ static int ipq_serial_getc(struct udevice *dev) { int byte; while (!ipq_serial_pending(dev, true)) { WATCHDOG_RESET(); /* wait for incoming data */ } byte = (int)word & 0xff; word = word >> 8; valid_data--; return byte; } /* * serial_setbrg - sets serial baudarate */ static int ipq_serial_setbrg(struct udevice *dev, int baudrate) { return 0; } static int ipq_serial_putc(struct udevice *dev, const char ch) { struct ipq_serial_platdata *plat = dev->platdata; unsigned long base = plat->reg_base; return msm_boot_uart_dm_write(&ch, 1, base); } static int ipq_serial_probe(struct udevice *dev) { struct ipq_serial_platdata *plat = dev->platdata; unsigned long base = plat->reg_base; ipq_serial_init(plat, base); return 0; } static int ipq_serial_ofdata_to_platdata(struct udevice *dev) { struct ipq_serial_platdata *plat = dev->platdata; fdt_addr_t addr; addr = dev_get_addr(dev); if (addr == FDT_ADDR_T_NONE) return -EINVAL; plat->reg_base = addr; plat->port_id = fdtdec_get_int(gd->fdt_blob, dev->of_offset, "id", -1); plat->bit_rate = fdtdec_get_int(gd->fdt_blob, dev->of_offset, "bit_rate", -1); plat->m_value = fdtdec_get_int(gd->fdt_blob, dev->of_offset, "m_value", -1); plat->n_value = fdtdec_get_int(gd->fdt_blob, dev->of_offset, "n_value", -1); plat->d_value = fdtdec_get_int(gd->fdt_blob, dev->of_offset, "d_value", -1); plat->gpio_node = fdt_subnode_offset(gd->fdt_blob, dev->of_offset, "serial_gpio"); return 0; } static const struct dm_serial_ops ipq_serial_ops = { .putc = ipq_serial_putc, .pending = ipq_serial_pending, .getc = ipq_serial_getc, .setbrg = ipq_serial_setbrg, }; static const struct udevice_id ipq_serial_ids[] = { { .compatible = "qca,ipq-uartdm" }, { } }; U_BOOT_DRIVER(serial_ipq) = { .name = "serial_ipq", .id = UCLASS_SERIAL, .of_match = ipq_serial_ids, .ofdata_to_platdata = ipq_serial_ofdata_to_platdata, .platdata_auto_alloc_size = sizeof(struct ipq_serial_platdata), .probe = ipq_serial_probe, .ops = &ipq_serial_ops, .flags = DM_FLAG_PRE_RELOC, }; /** * do_uartwr - transmits a string of data * @s: string to transmit */ static int do_uartwr(char *str) { unsigned long base = uart2.reg_base; while (*str != '\0') msm_boot_uart_dm_write(str++, 1, base); return 0; } static int uart_serial_tstc(void) { unsigned long base = uart2.reg_base; /* Return if data is already read */ if (uart_valid_data) return 1; /* Read data from the FIFO */ if (msm_boot_uart_dm_read(&uart_word, &uart_valid_data, 0, base) != MSM_BOOT_UART_DM_E_SUCCESS) return 0; return 1; } static int do_uartrd(void) { int byte; for (;;) { while (!uart_serial_tstc()) { /* wait for incoming data */ } byte = (int)uart_word & 0xff; switch (byte) { case 0x03: uart_word = uart_word >> 8; uart_valid_data--; return (-1); default: serial_putc(byte); } uart_word = uart_word >> 8; uart_valid_data--; } return 0; } static void do_uart_start(void) { int node; const u32 *uart_base; int len; node = fdt_path_offset(gd->fdt_blob, "uart2"); if (node < 0) { printf("2nd UART : Not found, skipping initialization\n"); return; } uart_base = fdt_getprop(gd->fdt_blob, node, "reg", &len); if (uart_base == NULL) { printf("UART init failed. Unable to get uart_base\n"); return; } uart2.reg_base = fdt32_to_cpu(uart_base[0]); uart2.port_id = fdtdec_get_int(gd->fdt_blob, node, "id", -1); uart2.bit_rate = fdtdec_get_int(gd->fdt_blob, node, "bit_rate", -1); uart2.clk_rate = fdtdec_get_int(gd->fdt_blob, node, "clk_rate", -1); uart2.m_value = fdtdec_get_int(gd->fdt_blob, node, "m_value", -1); uart2.n_value = fdtdec_get_int(gd->fdt_blob, node, "n_value", -1); uart2.d_value = fdtdec_get_int(gd->fdt_blob, node, "d_value", -1); uart2.gpio_node = fdt_subnode_offset(gd->fdt_blob, node, "serial_gpio"); ipq_serial_init(&uart2, uart2.reg_base); } static const unsigned int baud_table[] = { 150, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 57600, 115200 }; static int find_baud_rate(unsigned int baud_rate) { int i; for (i=0; idivisor == divisor) { writel(entry->code, MSM_BOOT_UART_DM_CSR(uart2.reg_base)); current_baud_rate = baud; break; } entry++; } } /****************************************************************************** * uart command intepreter */ static int do_uart(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) { int i; unsigned int baud_rate; if (argc < 2) return CMD_RET_USAGE; if (strncmp(argv[1], "start", 5) == 0) { printf("starting second UART...\n"); do_uart_start(); return 0; } if (strcmp(argv[1], "read") == 0) { if (argc == 2) { do_uartrd(); return 0; } } if (strcmp(argv[1], "write") == 0) { if (argc == 3) { do_uartwr(argv[2]); return 0; } } if (strcmp(argv[1], "baud_rate") == 0) { if (argc == 3) { baud_rate = simple_strtoul(argv[2], NULL, 10); if (!find_baud_rate(baud_rate)) { printf("Invalid baud rate %d\n", baud_rate); printf("The supported rates are:"); for (i=0; i