/* * BLSP QUP SPI controller driver. * Copyright (c) 2015, 2017 The Linux Foundation. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of The Linux Foundation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN * IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include "qca_qup_spi_bam.h" #include #include DECLARE_GLOBAL_DATA_PTR; static unsigned int read_pipe[CONFIG_IPQ_MAX_BLSP_QUPS]; static unsigned int write_pipe[CONFIG_IPQ_MAX_BLSP_QUPS]; static unsigned char qup_pipe_initialized = 0; static int check_bit_state(uint32_t reg_addr, int bit_num, int val, int us_delay) { unsigned int count = TIMEOUT_CNT; unsigned int bit_val = ((readl(reg_addr) >> bit_num) & 0x01); while (bit_val != val) { count--; if (count == 0) return -ETIMEDOUT; udelay(us_delay); bit_val = ((readl(reg_addr) >> bit_num) & 0x01); } return SUCCESS; } /* * Check whether QUPn State is valid */ static int check_qup_state_valid(struct ipq_spi_slave *ds) { return check_bit_state(ds->regs->qup_state, QUP_STATE_VALID_BIT, QUP_STATE_VALID, 1); } /* * Configure QUPn Core state */ static int config_spi_state(struct ipq_spi_slave *ds, unsigned int state) { uint32_t val; int ret; ret = check_qup_state_valid(ds); if (ret != SUCCESS) return ret; switch (state) { case SPI_RUN_STATE: /* Set the state to RUN */ val = ((readl(ds->regs->qup_state) & ~QUP_STATE_MASK) | QUP_STATE_RUN_STATE); writel(val, ds->regs->qup_state); ret = check_qup_state_valid(ds); if (ret != SUCCESS) return ret; ds->core_state = SPI_CORE_RUNNING; break; case SPI_RESET_STATE: /* Set the state to RESET */ val = ((readl(ds->regs->qup_state) & ~QUP_STATE_MASK) | QUP_STATE_RESET_STATE); writel(val, ds->regs->qup_state); ret = check_qup_state_valid(ds); if (ret != SUCCESS) return ret; ds->core_state = SPI_CORE_RESET; break; default: printf("err: unsupported QUP SPI state : %d\n", state); ret = -EINVAL; break; } return ret; } /* * Set QUPn SPI Mode */ static void spi_set_mode(struct ipq_spi_slave *ds, unsigned int mode) { unsigned int clk_idle_state; unsigned int input_first_mode; uint32_t val; switch (mode) { case SPI_MODE0: clk_idle_state = 0; input_first_mode = SPI_INPUT_FIRST_MODE; break; case SPI_MODE1: clk_idle_state = 0; input_first_mode = 0; break; case SPI_MODE2: clk_idle_state = 1; input_first_mode = SPI_INPUT_FIRST_MODE; break; case SPI_MODE3: clk_idle_state = 1; input_first_mode = 0; break; default: printf("err : unsupported spi mode : %d\n", mode); return; } val = readl(ds->regs->spi_config); val |= input_first_mode; writel(val, ds->regs->spi_config); val = readl(ds->regs->io_control); if (clk_idle_state) val |= SPI_IO_CONTROL_CLOCK_IDLE_HIGH; else val &= ~SPI_IO_CONTROL_CLOCK_IDLE_HIGH; writel(val, ds->regs->io_control); } /* * Reset entire QUP and all mini cores */ static void spi_reset(struct ipq_spi_slave *ds) { writel(0x1, ds->regs->qup_sw_reset); udelay(5); } void spi_init() { /* do nothing */ } static void qup_pipe_init(void) { char rd_pipe_name[10], wr_pipe_name[10]; int node,i; qup_pipe_initialized = 1; node = fdt_path_offset(gd->fdt_blob, "/spi"); if (node >= 0) { for(i = 0; i < CONFIG_IPQ_MAX_BLSP_QUPS; i++) { snprintf(rd_pipe_name, sizeof(rd_pipe_name), "rd_pipe_%01d", i); snprintf(wr_pipe_name, sizeof(wr_pipe_name), "wr_pipe_%01d", i); read_pipe[i] = fdtdec_get_uint(gd->fdt_blob, node, rd_pipe_name, 0); write_pipe[i] = fdtdec_get_uint(gd->fdt_blob, node, wr_pipe_name, 0); } } } /* * Function to assert and De-assert chip select */ static void CS_change(int port_num, int cs_num, int enable) { unsigned int cs_gpio = 0; uint32_t addr = 0; uint32_t val = 0; char spi_node_path[32]; int spi_cs_node = 0, spi_cs_gpio_node = 0; snprintf(spi_node_path, sizeof(spi_node_path), "/spi/spi%d/cs%d", port_num, cs_num); spi_cs_node = fdt_path_offset(gd->fdt_blob, spi_node_path); spi_cs_gpio_node = fdt_first_subnode(gd->fdt_blob, spi_cs_node); cs_gpio = fdtdec_get_uint(gd->fdt_blob, spi_cs_gpio_node, "gpio", 0); addr = GPIO_IN_OUT_ADDR(cs_gpio); val = readl(addr); val &= (~(GPIO_OUT)); if (!enable) val |= (GPIO_OUT); writel(val, addr); } /* * BLSP TLMM configuration */ int blsp_pin_config(unsigned int port_num, int cs_num) { char spi_node_path[32]; int spi_node = 0; snprintf(spi_node_path, sizeof(spi_node_path), "/spi/spi%d/cs%d", port_num, cs_num); spi_node = fdt_path_offset(gd->fdt_blob, spi_node_path); if (spi_node >= 0) { qca_gpio_init(spi_node); } else { printf("SPI : Node not found, skipping initialization\n"); return -1; } return 0; } int cs_is_valid(unsigned int port_num, int cs_num) { char spi_node_path[32]; int spi_node = 0; snprintf(spi_node_path, sizeof(spi_node_path), "/spi/spi%d/cs%d", port_num, cs_num); spi_node = fdt_path_offset(gd->fdt_blob, spi_node_path); if (spi_node >= 0) return 1; else return 0; } int qup_bam_init(struct ipq_spi_slave *ds) { uint8_t read_pipe_grp = QUP0_DATA_PRODUCER_PIPE_GRP; uint8_t write_pipe_grp = QUP0_DATA_CONSUMER_PIPE_GRP; int bam_ret; if (!qup_pipe_initialized) qup_pipe_init(); /* Pipe numbers based on the QUP index */ if (ds->slave.bus == BLSP0_SPI) { read_pipe_grp = QUP0_DATA_PRODUCER_PIPE_GRP; write_pipe_grp = QUP0_DATA_CONSUMER_PIPE_GRP; } else if (ds->slave.bus == BLSP1_SPI) { read_pipe_grp = QUP1_DATA_PRODUCER_PIPE_GRP; write_pipe_grp = QUP1_DATA_CONSUMER_PIPE_GRP; } bam.base = BLSP0_BAM_BASE; /* Set Read Pipe Params */ bam.pipe[DATA_PRODUCER_PIPE_INDEX].pipe_num = read_pipe[ds->slave.bus]; bam.pipe[DATA_PRODUCER_PIPE_INDEX].trans_type = BAM2SYS; bam.pipe[DATA_PRODUCER_PIPE_INDEX].fifo.size = QUP_BAM_DATA_FIFO_SIZE; bam.pipe[DATA_PRODUCER_PIPE_INDEX].fifo.head = qup_spi_data_desc_fifo; bam.pipe[DATA_PRODUCER_PIPE_INDEX].lock_grp = read_pipe_grp; /* Set Write pipe params. */ bam.pipe[DATA_CONSUMER_PIPE_INDEX].pipe_num = write_pipe[ds->slave.bus]; bam.pipe[DATA_CONSUMER_PIPE_INDEX].trans_type = SYS2BAM; bam.pipe[DATA_CONSUMER_PIPE_INDEX].fifo.size = QUP_BAM_DATA_FIFO_SIZE; bam.pipe[DATA_CONSUMER_PIPE_INDEX].fifo.head = qup_spi_data_desc_fifo; bam.pipe[DATA_CONSUMER_PIPE_INDEX].lock_grp = write_pipe_grp; /* Programs the threshold for BAM transfer * When this threshold is reached, BAM signals the peripheral via the * pipe_bytes_available interface. * The peripheral is signalled with this notification in the following * cases: * a. It has accumulated all the descriptors. * b. It has accumulated more than threshold bytes. * c. It has reached EOT (End Of Transfer). * Note: this value needs to be set by the h/w folks and is specific for * each peripheral. */ bam.threshold = QUP_SPI_BAM_THRESHOLD; /* Set the EE. */ bam.ee = QUP_SPI_EE; /* Set the max desc length for this BAM. */ bam.max_desc_len = QUP_SPI_MAX_DESC_LEN; /* BAM Init. */ bam_init(&bam); /* Initialize BAM QPIC read pipe */ bam_sys_pipe_init(&bam, DATA_PRODUCER_PIPE_INDEX); /* Init read fifo */ bam_ret = bam_pipe_fifo_init(&bam, DATA_PRODUCER_PIPE_INDEX); if (bam_ret) { printf("QUP: SPI: BAM Read FIFO init error\n"); bam_ret = FAILURE; goto qup_spi_bam_init_error; } /* Initialize BAM QPIC write pipe */ bam_sys_pipe_init(&bam, DATA_CONSUMER_PIPE_INDEX); /* Init write fifo. Use the same fifo as read fifo. */ bam_ret = bam_pipe_fifo_init(&bam, DATA_CONSUMER_PIPE_INDEX); if (bam_ret) { printf("QUP: SPI: BAM Write FIFO init error\n"); bam_ret = FAILURE; goto qup_spi_bam_init_error; } qup_spi_bam_init_error: return bam_ret; } struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct ipq_spi_slave *ds; /* * spi gpios are not initialised for DK07-C2. If probed, the * controller will indefinitely wait for response from slave. * Hence, return NULL. */ ds = malloc(sizeof(struct ipq_spi_slave)); if (!ds) { printf("SPI error: malloc of SPI structure failed\n"); return NULL; } memset(ds, 0, sizeof(struct ipq_spi_slave)); /* * QCA BLSP supports SPI Flash * on different BLSP 0 to CONFIG_IPQ_MAX_BLSP_QUPS-1 * with different number of chip selects (CS, channels): */ if (bus >= CONFIG_IPQ_MAX_BLSP_QUPS){ printf("SPI error: unsupported bus %d " "Supported busses 0 to %d\n", bus, CONFIG_IPQ_MAX_BLSP_QUPS-1); goto err; } ds->slave.bus = bus; ds->slave.cs = cs; BLSP_SPI_REGISTERS(spi_reg[bus]); ds->regs = &spi_reg[bus]; /* TODO For different clock frequency */ if (max_hz > MSM_QUP_MAX_FREQ) { printf("SPI error: unsupported frequency %d Hz " "Max frequency is %d Hz\n", max_hz, MSM_QUP_MAX_FREQ); goto err; } ds->freq = max_hz; if (mode > SPI_MODE3) { printf("SPI error: unsupported SPI mode %d\n", mode); goto err; } ds->mode = mode; /* DMA mode */ ds->use_dma = CONFIG_QUP_SPI_USE_DMA; if (ds->slave.cs >= 1 && cs_is_valid(ds->slave.bus, ds->slave.cs)) { /* GPIO Configuration for SPI NAND */ blsp_pin_config(ds->slave.bus, ds->slave.cs); CS_change(ds->slave.bus, ds->slave.cs, CS_DEASSERT); } #if !defined(CONFIG_SYS_DCACHE_OFF) flush_cache((unsigned long)ds, (unsigned long)sizeof(struct ipq_spi_slave)); #endif return &ds->slave; err: free(ds); return NULL; } void spi_free_slave(struct spi_slave *slave) { struct ipq_spi_slave *ds = to_ipq_spi(slave); if (ds != NULL) free(ds); } /* * BLSP QUPn SPI Hardware Initialisation */ static int spi_hw_init(struct ipq_spi_slave *ds) { int ret; ds->initialized = 0; /* QUPn module configuration */ spi_reset(ds); /* Set the QUPn state */ ret = config_spi_state(ds, SPI_RESET_STATE); if (ret) return ret; /* Initialize BAM */ if(ds->use_dma) { ret = qup_bam_init(ds); if (ret != SUCCESS) return ret; } /* * Configure Mini core to SPI core with Input Output enabled, * SPI master, N = 8 bits */ clrsetbits_le32(ds->regs->qup_config, (QUP_CONFIG_MINI_CORE_MSK | QUP_CONF_INPUT_MSK | QUP_CONF_OUTPUT_MSK | SPI_BIT_WORD_MSK), (QUP_CONFIG_MINI_CORE_SPI | QUP_CONF_INPUT_ENA | QUP_CONF_OUTPUT_ENA | SPI_8_BIT_WORD)); /* * Configure Input first SPI protocol, * SPI master mode and no loopback */ clrsetbits_le32(ds->regs->spi_config, (LOOP_BACK_MSK | SLAVE_OPERATION_MSK), (NO_LOOP_BACK | SLAVE_OPERATION)); /* * Configure SPI IO Control Register * CLK_ALWAYS_ON = 0 * MX_CS_MODE = 0 * NO_TRI_STATE = 1 */ writel((CLK_ALWAYS_ON | NO_TRI_STATE), ds->regs->io_control); /* * Configure SPI IO Modes. * OUTPUT_BIT_SHIFT_EN = 1 * INPUT_MODE = BAM Mode * OUTPUT MODE = BAM Mode */ if (ds->use_dma) clrsetbits_le32(ds->regs->qup_io_modes, (OUTPUT_BIT_SHIFT_MSK | INPUT_BLOCK_MODE_MSK | OUTPUT_BLOCK_MODE_MSK | PACK_EN_MSK | UNPACK_EN_MSK), (OUTPUT_BIT_SHIFT_EN | INPUT_BAM_MODE | OUTPUT_BAM_MODE | PACK_EN | UNPACK_EN)); else /* * Configure SPI IO Modes. * OUTPUT_BIT_SHIFT_EN = 1 * INPUT_MODE = Block Mode * OUTPUT MODE = Block Mode */ clrsetbits_le32(ds->regs->qup_io_modes, (OUTPUT_BIT_SHIFT_MSK | INPUT_BLOCK_MODE_MSK | OUTPUT_BLOCK_MODE_MSK), (OUTPUT_BIT_SHIFT_EN | INPUT_BLOCK_MODE | OUTPUT_BLOCK_MODE)); spi_set_mode(ds, ds->mode); /* Disable Error mask */ writel(0, ds->regs->error_flags_en); writel(0, ds->regs->qup_error_flags_en); writel(0, ds->regs->qup_deassert_wait); if (ds->use_dma) clrsetbits_le32(ds->regs->qup_op_mask, (OUTPUT_SERVICE_MSK | INPUT_SERVICE_MSK), (OUTPUT_SERVICE_DIS | INPUT_SERVICE_DIS)); ds->initialized = 1; return ret; } int spi_claim_bus(struct spi_slave *slave) { struct ipq_spi_slave *ds = to_ipq_spi(slave); unsigned int ret; ret = spi_hw_init(ds); if (ret) return -EIO; return SUCCESS; } void spi_release_bus(struct spi_slave *slave) { struct ipq_spi_slave *ds = to_ipq_spi(slave); /* Reset the SPI hardware */ spi_reset(ds); ds->initialized = 0; } static void write_force_cs(struct spi_slave *slave, int assert) { struct ipq_spi_slave *ds = to_ipq_spi(slave); if (assert) clrsetbits_le32(ds->regs->io_control, FORCE_CS_MSK, FORCE_CS_EN); else clrsetbits_le32(ds->regs->io_control, FORCE_CS_MSK, FORCE_CS_DIS); return; } /* * Function to write data to OUTPUT FIFO */ static void spi_write_byte(struct ipq_spi_slave *ds, unsigned char data) { /* Wait for space in the FIFO */ while ((readl(ds->regs->qup_operational) & QUP_OUTPUT_FIFO_FULL)) udelay(1); /* Write the byte of data */ writel(data, ds->regs->qup_output_fifo); } /* * Function to read data from Input FIFO */ static unsigned char spi_read_byte(struct ipq_spi_slave *ds) { /* Wait for Data in FIFO */ while (!(readl(ds->regs->qup_operational) & QUP_DATA_AVAILABLE_FOR_READ)) { udelay(1); } /* Read a byte of data */ return readl(ds->regs->qup_input_fifo) & 0xff; } /* * Function to check wheather Input or Output FIFO * has data to be serviced */ static int check_fifo_status(uint32_t reg_addr) { unsigned int count = TIMEOUT_CNT; unsigned int status_flag; unsigned int val; do { val = readl(reg_addr); count--; if (count == 0) return -ETIMEDOUT; status_flag = ((val & OUTPUT_SERVICE_FLAG) | (val & INPUT_SERVICE_FLAG)); } while (!status_flag); return SUCCESS; } /* * Function to configure Input and Output enable/disable */ static void enable_io_config(struct ipq_spi_slave *ds, uint32_t write_cnt, uint32_t read_cnt) { if (write_cnt) { clrsetbits_le32(ds->regs->qup_config, QUP_CONF_OUTPUT_MSK, QUP_CONF_OUTPUT_ENA); } else { clrsetbits_le32(ds->regs->qup_config, QUP_CONF_OUTPUT_MSK, QUP_CONF_NO_OUTPUT); } if (read_cnt) { clrsetbits_le32(ds->regs->qup_config, QUP_CONF_INPUT_MSK, QUP_CONF_INPUT_ENA); } else { clrsetbits_le32(ds->regs->qup_config, QUP_CONF_INPUT_MSK, QUP_CONF_NO_INPUT); } return; } static void blsp_spi_wait_for_data(uint32_t pipe_num) { /* Wait for the descriptors to be processed */ bam_wait_for_interrupt(&bam, pipe_num, P_PRCSD_DESC_EN_MASK); /* Read offset update for the circular FIFO */ bam_read_offset_update(&bam, pipe_num); } static int blsp_spi_bam_begin_xfer(struct ipq_spi_slave *ds, const u8 *buffer, unsigned int bytes, unsigned int type) { u32 tx_bytes_to_send = 0, rx_bytes_to_recv = 0; u32 n_words_xfr; u32 ret = 0; u32 prod_desc_cnt = SPI_BAM_MAX_DESC_NUM - 1; u32 cons_desc_cnt = SPI_BAM_MAX_DESC_NUM - 1; u32 tx_bytes_sent = 0; u32 rx_bytes_rcvd = 0; int state_config; u32 data_xfer_size; int cons_flag = 0, prod_flag = 0; int num_desc = 0; u32 rem_bytes = 0; rem_bytes = bytes; #if !defined(CONFIG_SYS_DCACHE_OFF) flush_cache((unsigned long)buffer, (unsigned long)bytes); #endif while (rem_bytes) { tx_bytes_to_send = min_t(u32, bytes, SPI_MAX_TRFR_BTWN_RESETS); rx_bytes_to_recv = min_t(u32, bytes, SPI_MAX_TRFR_BTWN_RESETS); if (bytes > SPI_MAX_TRFR_BTWN_RESETS) rem_bytes = bytes - SPI_MAX_TRFR_BTWN_RESETS; else rem_bytes = 0; writel(0, ds->regs->qup_mx_output_count); if (type == READ) { n_words_xfr = rx_bytes_to_recv; writel(n_words_xfr, ds->regs->qup_mx_input_count); } state_config = config_spi_state(ds, SPI_RUN_STATE); if (state_config) return state_config; if (type == WRITE) { if (cons_desc_cnt > 0) { data_xfer_size = tx_bytes_to_send; if (rem_bytes == 0 || cons_desc_cnt == 1) cons_flag = BAM_DESC_EOT_FLAG | BAM_DESC_NWD_FLAG; cons_flag |= BAM_DESC_INT_FLAG; bam_add_one_desc(&bam, DATA_CONSUMER_PIPE_INDEX, (unsigned char*)(buffer), data_xfer_size, cons_flag); num_desc++; bam_sys_gen_event(&bam, DATA_CONSUMER_PIPE_INDEX, num_desc); blsp_spi_wait_for_data(DATA_CONSUMER_PIPE_INDEX); num_desc = 0; tx_bytes_sent += data_xfer_size; buffer = buffer + data_xfer_size; bytes = rem_bytes; cons_desc_cnt--; if (cons_desc_cnt == 0) cons_desc_cnt = SPI_BAM_MAX_DESC_NUM - 1; } } else if (type == READ) { if (prod_desc_cnt > 0) { data_xfer_size = rx_bytes_to_recv; if (rem_bytes == 0 || prod_desc_cnt == 1) prod_flag = (BAM_DESC_EOT_FLAG | BAM_DESC_NWD_FLAG); prod_flag |= BAM_DESC_INT_FLAG; bam_add_one_desc(&bam, DATA_PRODUCER_PIPE_INDEX, (unsigned char*)(buffer), data_xfer_size, prod_flag); num_desc++; bam_sys_gen_event(&bam, DATA_PRODUCER_PIPE_INDEX, num_desc); blsp_spi_wait_for_data(DATA_PRODUCER_PIPE_INDEX); #if !defined(CONFIG_SYS_DCACHE_OFF) flush_cache((unsigned long)buffer, (unsigned long)bytes); #endif num_desc = 0; rx_bytes_rcvd += data_xfer_size; buffer = buffer + data_xfer_size; bytes = rem_bytes; prod_desc_cnt--; if (prod_desc_cnt == 0) prod_desc_cnt = SPI_BAM_MAX_DESC_NUM - 1; } } state_config = config_spi_state(ds, SPI_RESET_STATE); if (state_config) return state_config; } return ret; } /* * Function to read bytes number of data from the Input FIFO */ static int __blsp_spi_read(struct ipq_spi_slave *ds, u8 *data_buffer, unsigned int bytes) { uint32_t val; unsigned int i; unsigned int read_bytes = bytes; unsigned int fifo_count; int ret = SUCCESS; int state_config; /* Configure no of bytes to read */ state_config = config_spi_state(ds, SPI_RESET_STATE); if (state_config) return state_config; /* Configure input and output enable */ enable_io_config(ds, 0, read_bytes); if (!(ds->use_dma)) writel(bytes, ds->regs->qup_mx_input_count); if (ds->use_dma && read_bytes) blsp_spi_bam_begin_xfer(ds, data_buffer, bytes, READ); else { state_config = config_spi_state(ds, SPI_RUN_STATE); if (state_config) return state_config; while (read_bytes) { ret = check_fifo_status(ds->regs->qup_operational); if (ret != SUCCESS) goto out; val = readl(ds->regs->qup_operational); if (val & INPUT_SERVICE_FLAG) { /* * acknowledge to hw that software will * read input data */ val &= INPUT_SERVICE_FLAG; writel(val, ds->regs->qup_operational); fifo_count = ((read_bytes > SPI_INPUT_BLOCK_SIZE) ? SPI_INPUT_BLOCK_SIZE : read_bytes); for (i = 0; i < fifo_count; i++) { *data_buffer = spi_read_byte(ds); data_buffer++; read_bytes--; } } } } out: /* * Put the SPI Core back in the Reset State * to end the transfer */ (void)config_spi_state(ds, SPI_RESET_STATE); return ret; } static int blsp_spi_read(struct ipq_spi_slave *ds, u8 *data_buffer, unsigned int bytes) { int length, ret; if (!(ds->use_dma)) { while (bytes) { length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE; ret = __blsp_spi_read(ds, data_buffer, length); if (ret != SUCCESS) return ret; data_buffer += length; bytes -= length; } } else { ret = __blsp_spi_read(ds, data_buffer, bytes); if (ret != SUCCESS) return ret; } return 0; } /* * Function to write data to the Output FIFO */ static int __blsp_spi_write(struct ipq_spi_slave *ds, const u8 *cmd_buffer, unsigned int bytes) { uint32_t val; unsigned int i; unsigned int write_len = bytes; unsigned int read_len = bytes; unsigned int fifo_count; int ret = SUCCESS; int state_config; state_config = config_spi_state(ds, SPI_RESET_STATE); if (state_config) return state_config; if (ds->use_dma) { /* No of bytes to be written in Output FIFO */ writel(0, ds->regs->qup_mx_read_count); writel(0, ds->regs->qup_mx_write_count); writel(0, ds->regs->qup_mx_output_count); writel(0, ds->regs->qup_mx_input_count); } else { writel(bytes, ds->regs->qup_mx_output_count); writel(bytes, ds->regs->qup_mx_input_count); state_config = config_spi_state(ds, SPI_RUN_STATE); if (state_config) return state_config; } /* Configure input and output enable */ if (!(ds->use_dma)) { enable_io_config(ds, write_len, read_len); } else { enable_io_config(ds, write_len, 0); } if (ds->use_dma && write_len) blsp_spi_bam_begin_xfer(ds, cmd_buffer, bytes, WRITE); else { /* * read_len considered to ensure that we read the dummy data for the * write we performed. This is needed to ensure with WR-RD transaction * to get the actual data on the subsequent read cycle that happens */ while (write_len || read_len) { ret = check_fifo_status(ds->regs->qup_operational); if (ret != SUCCESS) goto out; val = readl(ds->regs->qup_operational); if (val & OUTPUT_SERVICE_FLAG) { /* * acknowledge to hw that software will write * expected output data */ val &= OUTPUT_SERVICE_FLAG; writel(val, ds->regs->qup_operational); if (write_len > SPI_OUTPUT_BLOCK_SIZE) fifo_count = SPI_OUTPUT_BLOCK_SIZE; else fifo_count = write_len; for (i = 0; i < fifo_count; i++) { /* Write actual data to output FIFO */ spi_write_byte(ds, *cmd_buffer); cmd_buffer++; write_len--; } } if (val & INPUT_SERVICE_FLAG) { /* * acknowledge to hw that software * will read input data */ val &= INPUT_SERVICE_FLAG; writel(val, ds->regs->qup_operational); if (read_len > SPI_INPUT_BLOCK_SIZE) fifo_count = SPI_INPUT_BLOCK_SIZE; else fifo_count = read_len; for (i = 0; i < fifo_count; i++) { /* Read dummy data for the data written */ (void)spi_read_byte(ds); /* Decrement the write count after reading the * dummy data from the device. This is to make * sure we read dummy data before we write the * data to fifo */ read_len--; } } } } out: /* * Put the SPI Core back in the Reset State * to end the transfer */ (void)config_spi_state(ds, SPI_RESET_STATE); return ret; } static int blsp_spi_write(struct ipq_spi_slave *ds, const u8 *cmd_buffer, unsigned int bytes) { int length, ret; if (!(ds->use_dma)) { while (bytes) { length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE; ret = __blsp_spi_write(ds, cmd_buffer, length); if (ret != SUCCESS) return ret; cmd_buffer += length; bytes -= length; } } else { ret = __blsp_spi_write(ds, cmd_buffer, bytes); if (ret != SUCCESS) return ret; } return 0; } /* * This function is invoked with either tx_buf or rx_buf. * Calling this function with both null does a chip select change. */ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct ipq_spi_slave *ds = to_ipq_spi(slave); unsigned int len; const u8 *txp = dout; u8 *rxp = din; int ret = SUCCESS; if (bitlen & SPI_BITLEN_MSK) { printf("err : Invalid bit length"); return -EINVAL; } len = bitlen >> 3; if (flags & SPI_XFER_BEGIN) { if (!(ds->use_dma)) { ret = spi_hw_init(ds); if (ret != SUCCESS) return ret; } if (ds->slave.cs == 1 && cs_is_valid(ds->slave.bus, ds->slave.cs)) { /* SPI NAND CS Settings */ setbits_le32(ds->regs->io_control, CS_POLARITY_MASK); CS_change(ds->slave.bus, ds->slave.cs, CS_ASSERT); } else { write_force_cs(slave, 1); } } if (dout != NULL) { ret = blsp_spi_write(ds, txp, len); if (ret != SUCCESS) return ret; } if (din != NULL) { ret = blsp_spi_read(ds, rxp, len); if (ret != SUCCESS) return ret; } if (flags & SPI_XFER_END) { if (ds->slave.cs == 1 && cs_is_valid(ds->slave.bus, ds->slave.cs)) { /* SPI NAND CS Settings */ clrbits_le32(ds->regs->io_control, CS_POLARITY_MASK); CS_change(ds->slave.bus, ds->slave.cs, CS_DEASSERT); } else { write_force_cs(slave, 0); } } return ret; } int spi_cs_is_valid(unsigned int bus, unsigned int cs) { return 1; } void spi_cs_activate(struct spi_slave *slave) { } void spi_cs_deactivate(struct spi_slave *slave) { }