/* * BLSP QUP SPI controller driver. * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 and * only version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include "qca_qup_spi.h" static int check_bit_state(uint32_t reg_addr, int bit_num, int val, int us_delay) { unsigned int count = TIMEOUT_CNT; unsigned int bit_val = ((readl(reg_addr) >> bit_num) & 0x01); while (bit_val != val) { count--; if (count == 0) return -ETIMEDOUT; udelay(us_delay); bit_val = ((readl(reg_addr) >> bit_num) & 0x01); } return SUCCESS; } /* * Check whether QUPn State is valid */ static int check_qup_state_valid(struct ipq_spi_slave *ds) { return check_bit_state(ds->regs->qup_state, QUP_STATE_VALID_BIT, QUP_STATE_VALID, 1); } /* * Configure QUPn Core state */ static int config_spi_state(struct ipq_spi_slave *ds, unsigned int state) { uint32_t val; int ret = SUCCESS; ret = check_qup_state_valid(ds); if (ret != SUCCESS) return ret; switch (state) { case SPI_RUN_STATE: /* Set the state to RUN */ val = ((readl(ds->regs->qup_state) & ~QUP_STATE_MASK) | QUP_STATE_RUN_STATE); writel(val, ds->regs->qup_state); ret = check_qup_state_valid(ds); if (ret != SUCCESS) return ret; ds->core_state = SPI_CORE_RUNNING; break; case SPI_RESET_STATE: /* Set the state to RESET */ val = ((readl(ds->regs->qup_state) & ~QUP_STATE_MASK) | QUP_STATE_RESET_STATE); writel(val, ds->regs->qup_state); ret = check_qup_state_valid(ds); if (ret != SUCCESS) return ret; ds->core_state = SPI_CORE_RESET; break; default: printf("err: unsupported QUP SPI state : %d\n", state); ret = -EINVAL; break; } return ret; } /* * Set QUPn SPI Mode */ static void spi_set_mode(struct ipq_spi_slave *ds, unsigned int mode) { unsigned int clk_idle_state; unsigned int input_first_mode; uint32_t val; switch (mode) { case SPI_MODE0: clk_idle_state = 0; input_first_mode = SPI_INPUT_FIRST_MODE; break; case SPI_MODE1: clk_idle_state = 0; input_first_mode = 0; break; case SPI_MODE2: clk_idle_state = 1; input_first_mode = SPI_INPUT_FIRST_MODE; break; case SPI_MODE3: clk_idle_state = 1; input_first_mode = 0; break; default: printf("err : unsupported spi mode : %d\n", mode); return; } val = readl(ds->regs->spi_config); val |= input_first_mode; writel(val, ds->regs->spi_config); val = readl(ds->regs->io_control); if (clk_idle_state) val |= SPI_IO_CONTROL_CLOCK_IDLE_HIGH; else val &= ~SPI_IO_CONTROL_CLOCK_IDLE_HIGH; writel(val, ds->regs->io_control); } /* * Reset entire QUP and all mini cores */ static void spi_reset(struct ipq_spi_slave *ds) { writel(0x1, ds->regs->qup_sw_reset); udelay(5); } void spi_init() { /* do nothing */ } struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs, unsigned int max_hz, unsigned int mode) { struct ipq_spi_slave *ds; ds = malloc(sizeof(struct ipq_spi_slave)); if (!ds) { printf("SPI error: malloc of SPI structure failed\n"); return NULL; } memset(ds, 0, sizeof(struct ipq_spi_slave)); /* * QCA BLSP supports SPI Flash * on different BLSP0 and BLSP1 * with different number of chip selects (CS, channels): */ if ((bus < BLSP0_SPI) || (bus > BLSP1_SPI) || ((bus == BLSP0_SPI) && (cs > 2)) || ((bus == BLSP1_SPI) && (cs > 0))) { printf("SPI error: unsupported bus %d " "(Supported busses 0,1 and 2) or chipselect\n", bus); goto err; } ds->slave.bus = bus; ds->slave.cs = cs; ds->regs = &spi_reg[bus]; /* TODO For different clock frequency */ if (max_hz > MSM_QUP_MAX_FREQ) { printf("SPI error: unsupported frequency %d Hz " "Max frequency is %d Hz\n", max_hz, MSM_QUP_MAX_FREQ); goto err; } ds->freq = max_hz; if (mode > SPI_MODE3) { printf("SPI error: unsupported SPI mode %d\n", mode); goto err; } ds->mode = mode; return &ds->slave; err: free(ds); return NULL; } void spi_free_slave(struct spi_slave *slave) { struct ipq_spi_slave *ds = to_ipq_spi(slave); if (ds != NULL) free(ds); } /* * BLSP QUPn SPI Hardware Initialisation */ static int spi_hw_init(struct ipq_spi_slave *ds) { int ret; ds->initialized = 0; /* QUPn module configuration */ spi_reset(ds); /* Set the QUPn state */ ret = config_spi_state(ds, SPI_RESET_STATE); if (ret) return ret; /* * Configure Mini core to SPI core with Input Output enabled, * SPI master, N = 8 bits */ clrsetbits_le32(ds->regs->qup_config, (QUP_CONFIG_MINI_CORE_MSK | QUP_CONF_INPUT_MSK | QUP_CONF_OUTPUT_MSK | SPI_BIT_WORD_MSK), (QUP_CONFIG_MINI_CORE_SPI | QUP_CONF_INPUT_ENA | QUP_CONF_OUTPUT_ENA | SPI_8_BIT_WORD)); /* * Configure Input first SPI protocol, * SPI master mode and no loopback */ clrsetbits_le32(ds->regs->spi_config, (LOOP_BACK_MSK | SLAVE_OPERATION_MSK), (NO_LOOP_BACK | SLAVE_OPERATION)); /* * Configure SPI IO Control Register * CLK_ALWAYS_ON = 0 * MX_CS_MODE = 0 * NO_TRI_STATE = 1 */ writel((CLK_ALWAYS_ON | NO_TRI_STATE), ds->regs->io_control); /* * Configure SPI IO Modes. * OUTPUT_BIT_SHIFT_EN = 1 * INPUT_MODE = Block Mode * OUTPUT MODE = Block Mode */ clrsetbits_le32(ds->regs->qup_io_modes, (OUTPUT_BIT_SHIFT_MSK | INPUT_BLOCK_MODE_MSK | OUTPUT_BLOCK_MODE_MSK), (OUTPUT_BIT_SHIFT_EN | INPUT_BLOCK_MODE | OUTPUT_BLOCK_MODE)); spi_set_mode(ds, ds->mode); /* Disable Error mask */ writel(0, ds->regs->error_flags_en); writel(0, ds->regs->qup_error_flags_en); writel(0, ds->regs->qup_deassert_wait); ds->initialized = 1; return SUCCESS; } int spi_claim_bus(struct spi_slave *slave) { struct ipq_spi_slave *ds = to_ipq_spi(slave); unsigned int ret; ret = spi_hw_init(ds); if (ret) return -EIO; return SUCCESS; } void spi_release_bus(struct spi_slave *slave) { struct ipq_spi_slave *ds = to_ipq_spi(slave); /* Reset the SPI hardware */ spi_reset(ds); ds->initialized = 0; } static void write_force_cs(struct spi_slave *slave, int assert) { struct ipq_spi_slave *ds = to_ipq_spi(slave); if (assert) clrsetbits_le32(ds->regs->io_control, FORCE_CS_MSK, FORCE_CS_EN); else clrsetbits_le32(ds->regs->io_control, FORCE_CS_MSK, FORCE_CS_DIS); return; } /* * Function to write data to OUTPUT FIFO */ static void spi_write_byte(struct ipq_spi_slave *ds, unsigned char data) { /* Wait for space in the FIFO */ while ((readl(ds->regs->qup_operational) & QUP_OUTPUT_FIFO_FULL)) udelay(1); /* Write the byte of data */ writel(data, ds->regs->qup_output_fifo); } /* * Function to read data from Input FIFO */ static unsigned char spi_read_byte(struct ipq_spi_slave *ds) { /* Wait for Data in FIFO */ while (!(readl(ds->regs->qup_operational) & QUP_DATA_AVAILABLE_FOR_READ)) { udelay(1); } /* Read a byte of data */ return readl(ds->regs->qup_input_fifo) & 0xff; } /* * Function to check wheather Input or Output FIFO * has data to be serviced */ static int check_fifo_status(uint32_t reg_addr) { unsigned int count = TIMEOUT_CNT; unsigned int status_flag; unsigned int val; do { val = readl(reg_addr); count--; if (count == 0) return -ETIMEDOUT; status_flag = ((val & OUTPUT_SERVICE_FLAG) | (val & INPUT_SERVICE_FLAG)); } while (!status_flag); return SUCCESS; } /* * Function to configure Input and Output enable/disable */ static void enable_io_config(struct ipq_spi_slave *ds, uint32_t write_cnt, uint32_t read_cnt) { if (write_cnt) { clrsetbits_le32(ds->regs->qup_config, QUP_CONF_OUTPUT_MSK, QUP_CONF_OUTPUT_ENA); } else { clrsetbits_le32(ds->regs->qup_config, QUP_CONF_OUTPUT_MSK, QUP_CONF_NO_OUTPUT); } if (read_cnt) { clrsetbits_le32(ds->regs->qup_config, QUP_CONF_INPUT_MSK, QUP_CONF_INPUT_ENA); } else { clrsetbits_le32(ds->regs->qup_config, QUP_CONF_INPUT_MSK, QUP_CONF_NO_INPUT); } return; } /* * Function to read bytes number of data from the Input FIFO */ static int __blsp_spi_read(struct ipq_spi_slave *ds, u8 *data_buffer, unsigned int bytes) { uint32_t val; unsigned int i; unsigned int read_bytes = bytes; unsigned int fifo_count; int ret = SUCCESS; int state_config; /* Configure no of bytes to read */ state_config = config_spi_state(ds, SPI_RESET_STATE); if (state_config) return state_config; /* Configure input and output enable */ enable_io_config(ds, 0, read_bytes); writel(bytes, ds->regs->qup_mx_input_count); state_config = config_spi_state(ds, SPI_RUN_STATE); if (state_config) return state_config; while (read_bytes) { ret = check_fifo_status(ds->regs->qup_operational); if (ret != SUCCESS) goto out; val = readl(ds->regs->qup_operational); if (val & INPUT_SERVICE_FLAG) { /* * acknowledge to hw that software will * read input data */ val &= INPUT_SERVICE_FLAG; writel(val, ds->regs->qup_operational); fifo_count = ((read_bytes > SPI_INPUT_BLOCK_SIZE) ? SPI_INPUT_BLOCK_SIZE : read_bytes); for (i = 0; i < fifo_count; i++) { *data_buffer = spi_read_byte(ds); data_buffer++; read_bytes--; } } } out: /* * Put the SPI Core back in the Reset State * to end the transfer */ (void)config_spi_state(ds, SPI_RESET_STATE); return ret; } static int blsp_spi_read(struct ipq_spi_slave *ds, u8 *data_buffer, unsigned int bytes) { int length, ret; while (bytes) { length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE; ret = __blsp_spi_read(ds, data_buffer, length); if (ret != SUCCESS) return ret; data_buffer += length; bytes -= length; } return 0; } /* * Function to write data to the Output FIFO */ static int __blsp_spi_write(struct ipq_spi_slave *ds, const u8 *cmd_buffer, unsigned int bytes) { uint32_t val; unsigned int i; unsigned int write_len = bytes; unsigned int read_len = bytes; unsigned int fifo_count; int ret = SUCCESS; int state_config; state_config = config_spi_state(ds, SPI_RESET_STATE); if (state_config) return state_config; /* No of bytes to be written in Output FIFO */ writel(bytes, ds->regs->qup_mx_output_count); writel(bytes, ds->regs->qup_mx_input_count); state_config = config_spi_state(ds, SPI_RUN_STATE); if (state_config) return state_config; /* Configure input and output enable */ enable_io_config(ds, write_len, read_len); /* * read_len considered to ensure that we read the dummy data for the * write we performed. This is needed to ensure with WR-RD transaction * to get the actual data on the subsequent read cycle that happens */ while (write_len || read_len) { ret = check_fifo_status(ds->regs->qup_operational); if (ret != SUCCESS) goto out; val = readl(ds->regs->qup_operational); if (val & OUTPUT_SERVICE_FLAG) { /* * acknowledge to hw that software will write * expected output data */ val &= OUTPUT_SERVICE_FLAG; writel(val, ds->regs->qup_operational); if (write_len > SPI_OUTPUT_BLOCK_SIZE) fifo_count = SPI_OUTPUT_BLOCK_SIZE; else fifo_count = write_len; for (i = 0; i < fifo_count; i++) { /* Write actual data to output FIFO */ spi_write_byte(ds, *cmd_buffer); cmd_buffer++; write_len--; } } if (val & INPUT_SERVICE_FLAG) { /* * acknowledge to hw that software * will read input data */ val &= INPUT_SERVICE_FLAG; writel(val, ds->regs->qup_operational); if (read_len > SPI_INPUT_BLOCK_SIZE) fifo_count = SPI_INPUT_BLOCK_SIZE; else fifo_count = read_len; for (i = 0; i < fifo_count; i++) { /* Read dummy data for the data written */ (void)spi_read_byte(ds); /* Decrement the write count after reading the dummy data * from the device. This is to make sure we read dummy data * before we write the data to fifo */ read_len--; } } } out: /* * Put the SPI Core back in the Reset State * to end the transfer */ (void)config_spi_state(ds, SPI_RESET_STATE); return ret; } static int blsp_spi_write(struct ipq_spi_slave *ds, const u8 *cmd_buffer, unsigned int bytes) { int length, ret; while (bytes) { length = (bytes < MAX_COUNT_SIZE) ? bytes : MAX_COUNT_SIZE; ret = __blsp_spi_write(ds, cmd_buffer, length); if (ret != SUCCESS) return ret; cmd_buffer += length; bytes -= length; } return 0; } /* * This function is invoked with either tx_buf or rx_buf. * Calling this function with both null does a chip select change. */ int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout, void *din, unsigned long flags) { struct ipq_spi_slave *ds = to_ipq_spi(slave); unsigned int len; const u8 *txp = dout; u8 *rxp = din; int ret; if (bitlen & 0x07) { printf("err : Invalid bit length"); return -EINVAL; } len = bitlen >> 3; if (flags & SPI_XFER_BEGIN) { ret = spi_hw_init(ds); if (ret != SUCCESS) return ret; write_force_cs(slave, 1); } if (dout != NULL) { ret = blsp_spi_write(ds, txp, len); if (ret != SUCCESS) return ret; } if (din != NULL) { ret = blsp_spi_read(ds, rxp, len); if (ret != SUCCESS) return ret; } if (flags & SPI_XFER_END) { /* To handle only when chip select change is needed */ write_force_cs(slave, 0); } return ret; } int spi_cs_is_valid(unsigned int bus, unsigned int cs) { return 1; } void spi_cs_activate(struct spi_slave *slave) { } void spi_cs_deactivate(struct spi_slave *slave) { }