realtek-doc/sources/rtk-xgs1210/system/common/util/rt_util_system.c
Markus Stockhausen 18a30ac6d1 add XGS1210 sdk
2025-04-27 15:53:52 -04:00

908 lines
25 KiB
C

/*
* Copyright (C) 2009-2016 Realtek Semiconductor Corp.
* All Rights Reserved.
*
* This program is the proprietary software of Realtek Semiconductor
* Corporation and/or its licensors, and only be used, duplicated,
* modified or distributed under the authorized license from Realtek.
*
* ANY USE OF THE SOFTWARE OTHER THAN AS AUTHORIZED UNDER
* THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.
*
* $Revision: 96728 $
* $Date: 2019-05-08 14:00:51 +0800 (Wed, 08 May 2019) $
*
* Purpose : Define the utility macro and function in the SDK.
*
* Feature : SDK common utility
*
*/
/*
* Include Files
*/
#include <common/rt_autoconf.h>
#include <ioal/mem32.h>
#include <common/error.h>
#include <osal/print.h>
#include <osal/memory.h>
#include <osal/print.h>
#include <osal/lib.h>
#include <common/rt_type.h>
#include <common/rt_error.h>
#include <common/debug/rt_log.h>
#ifdef CONFIG_SDK_HW_PROFILE_PROBE_UBOOT_ENV
#if defined(CONFIG_SDK_KERNEL_LINUX) && !defined(__KERNEL__)
#include <mtd/mtd-user.h>
#include <fcntl.h>
#include <linux/fs.h>
#include <sys/ioctl.h>
#include <unistd.h>
#endif
#if defined(CONFIG_SDK_KERNEL_LINUX) && defined(__KERNEL__)
#include <linux/version.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand.h>
#include <mtd/mtd-abi.h>
#include <linux/slab.h>
#endif
#endif /* CONFIG_SDK_HW_PROFILE_PROBE_UBOOT_ENV */
#include <common/util/rt_util_system.h>
#ifdef CONFIG_SDK_HW_PROFILE_PROBE_GPIO
#if defined(CONFIG_SDK_KERNEL_LINUX) && defined(__KERNEL__)
#include <linux/version.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/nand.h>
#include <mtd/mtd-abi.h>
#include <linux/slab.h>
#endif
#include <private/drv/swcore/swcore.h>
#include <private/drv/swcore/chip_probe.h>
#include <drv/gpio/generalCtrl_gpio.h>
#include <hwp/hw_profile.h>
#if defined(CONFIG_SDK_RTL8231)
#include <private/drv/rtl8231/rtl8231_probe.h>
#endif
#endif
#if !defined(__BOOTLOADER__) && defined(__KERNEL__)
#include <linux/mtd/rtk_flash_common.h>
#endif
/*
* Symbol Definition
*/
/*
* Data Declaration
*/
#ifdef CONFIG_SDK_HW_PROFILE_PROBE_GPIO
static const board_probe_gpio_t board_probe_pin_example = {
.total_gpio = BOARD_PROBE_PIN_NUMBER,
.pin = {
[0] = {HWP_GPIO_PROBE_USED_DEVICE_ID, 0, 18, GPIO_DIR_IN}, /* bit 0 */
[1] = {HWP_GPIO_PROBE_USED_DEVICE_ID, 0, 19, GPIO_DIR_IN}, /* bit 1 */
[2] = {HWP_GPIO_PROBE_USED_DEVICE_ID, 0, 23, GPIO_DIR_IN}, /* bit 2 */
},
};
#endif
static uint8 ledModeInitSkip_value=LEDMODEINITSKIP_INIT_VALUE;
/*
* Macro Definition
*/
/* ========================================================================= */
#define local static
#define DO1(buf) crc = crc_table[((int)crc ^ (*buf++)) & 0xff] ^ (crc >> 8);
#define DO2(buf) DO1(buf); DO1(buf);
#define DO4(buf) DO2(buf); DO2(buf);
#define DO8(buf) DO4(buf); DO4(buf);
/* ========================================================================
* Table of CRC-32's of all single-byte values (made by make_crc_table)
*/
local const uint32 crc_table[256] = {
0x00000000L, 0x77073096L, 0xee0e612cL, 0x990951baL, 0x076dc419L,
0x706af48fL, 0xe963a535L, 0x9e6495a3L, 0x0edb8832L, 0x79dcb8a4L,
0xe0d5e91eL, 0x97d2d988L, 0x09b64c2bL, 0x7eb17cbdL, 0xe7b82d07L,
0x90bf1d91L, 0x1db71064L, 0x6ab020f2L, 0xf3b97148L, 0x84be41deL,
0x1adad47dL, 0x6ddde4ebL, 0xf4d4b551L, 0x83d385c7L, 0x136c9856L,
0x646ba8c0L, 0xfd62f97aL, 0x8a65c9ecL, 0x14015c4fL, 0x63066cd9L,
0xfa0f3d63L, 0x8d080df5L, 0x3b6e20c8L, 0x4c69105eL, 0xd56041e4L,
0xa2677172L, 0x3c03e4d1L, 0x4b04d447L, 0xd20d85fdL, 0xa50ab56bL,
0x35b5a8faL, 0x42b2986cL, 0xdbbbc9d6L, 0xacbcf940L, 0x32d86ce3L,
0x45df5c75L, 0xdcd60dcfL, 0xabd13d59L, 0x26d930acL, 0x51de003aL,
0xc8d75180L, 0xbfd06116L, 0x21b4f4b5L, 0x56b3c423L, 0xcfba9599L,
0xb8bda50fL, 0x2802b89eL, 0x5f058808L, 0xc60cd9b2L, 0xb10be924L,
0x2f6f7c87L, 0x58684c11L, 0xc1611dabL, 0xb6662d3dL, 0x76dc4190L,
0x01db7106L, 0x98d220bcL, 0xefd5102aL, 0x71b18589L, 0x06b6b51fL,
0x9fbfe4a5L, 0xe8b8d433L, 0x7807c9a2L, 0x0f00f934L, 0x9609a88eL,
0xe10e9818L, 0x7f6a0dbbL, 0x086d3d2dL, 0x91646c97L, 0xe6635c01L,
0x6b6b51f4L, 0x1c6c6162L, 0x856530d8L, 0xf262004eL, 0x6c0695edL,
0x1b01a57bL, 0x8208f4c1L, 0xf50fc457L, 0x65b0d9c6L, 0x12b7e950L,
0x8bbeb8eaL, 0xfcb9887cL, 0x62dd1ddfL, 0x15da2d49L, 0x8cd37cf3L,
0xfbd44c65L, 0x4db26158L, 0x3ab551ceL, 0xa3bc0074L, 0xd4bb30e2L,
0x4adfa541L, 0x3dd895d7L, 0xa4d1c46dL, 0xd3d6f4fbL, 0x4369e96aL,
0x346ed9fcL, 0xad678846L, 0xda60b8d0L, 0x44042d73L, 0x33031de5L,
0xaa0a4c5fL, 0xdd0d7cc9L, 0x5005713cL, 0x270241aaL, 0xbe0b1010L,
0xc90c2086L, 0x5768b525L, 0x206f85b3L, 0xb966d409L, 0xce61e49fL,
0x5edef90eL, 0x29d9c998L, 0xb0d09822L, 0xc7d7a8b4L, 0x59b33d17L,
0x2eb40d81L, 0xb7bd5c3bL, 0xc0ba6cadL, 0xedb88320L, 0x9abfb3b6L,
0x03b6e20cL, 0x74b1d29aL, 0xead54739L, 0x9dd277afL, 0x04db2615L,
0x73dc1683L, 0xe3630b12L, 0x94643b84L, 0x0d6d6a3eL, 0x7a6a5aa8L,
0xe40ecf0bL, 0x9309ff9dL, 0x0a00ae27L, 0x7d079eb1L, 0xf00f9344L,
0x8708a3d2L, 0x1e01f268L, 0x6906c2feL, 0xf762575dL, 0x806567cbL,
0x196c3671L, 0x6e6b06e7L, 0xfed41b76L, 0x89d32be0L, 0x10da7a5aL,
0x67dd4accL, 0xf9b9df6fL, 0x8ebeeff9L, 0x17b7be43L, 0x60b08ed5L,
0xd6d6a3e8L, 0xa1d1937eL, 0x38d8c2c4L, 0x4fdff252L, 0xd1bb67f1L,
0xa6bc5767L, 0x3fb506ddL, 0x48b2364bL, 0xd80d2bdaL, 0xaf0a1b4cL,
0x36034af6L, 0x41047a60L, 0xdf60efc3L, 0xa867df55L, 0x316e8eefL,
0x4669be79L, 0xcb61b38cL, 0xbc66831aL, 0x256fd2a0L, 0x5268e236L,
0xcc0c7795L, 0xbb0b4703L, 0x220216b9L, 0x5505262fL, 0xc5ba3bbeL,
0xb2bd0b28L, 0x2bb45a92L, 0x5cb36a04L, 0xc2d7ffa7L, 0xb5d0cf31L,
0x2cd99e8bL, 0x5bdeae1dL, 0x9b64c2b0L, 0xec63f226L, 0x756aa39cL,
0x026d930aL, 0x9c0906a9L, 0xeb0e363fL, 0x72076785L, 0x05005713L,
0x95bf4a82L, 0xe2b87a14L, 0x7bb12baeL, 0x0cb61b38L, 0x92d28e9bL,
0xe5d5be0dL, 0x7cdcefb7L, 0x0bdbdf21L, 0x86d3d2d4L, 0xf1d4e242L,
0x68ddb3f8L, 0x1fda836eL, 0x81be16cdL, 0xf6b9265bL, 0x6fb077e1L,
0x18b74777L, 0x88085ae6L, 0xff0f6a70L, 0x66063bcaL, 0x11010b5cL,
0x8f659effL, 0xf862ae69L, 0x616bffd3L, 0x166ccf45L, 0xa00ae278L,
0xd70dd2eeL, 0x4e048354L, 0x3903b3c2L, 0xa7672661L, 0xd06016f7L,
0x4969474dL, 0x3e6e77dbL, 0xaed16a4aL, 0xd9d65adcL, 0x40df0b66L,
0x37d83bf0L, 0xa9bcae53L, 0xdebb9ec5L, 0x47b2cf7fL, 0x30b5ffe9L,
0xbdbdf21cL, 0xcabac28aL, 0x53b39330L, 0x24b4a3a6L, 0xbad03605L,
0xcdd70693L, 0x54de5729L, 0x23d967bfL, 0xb3667a2eL, 0xc4614ab8L,
0x5d681b02L, 0x2a6f2b94L, 0xb40bbe37L, 0xc30c8ea1L, 0x5a05df1bL,
0x2d02ef8dL
};
/* ========================================================================= */
/* Function Name:
* rt_util_crc32_cal
* Description:
* Calculate crc32 checksum
* Input:
* crc - crc checksum
* buf - data buffer
* len - data length
* Output:
* None
* Return:
* checksum
* Note:
* None
*/
uint32 rt_util_crc32_cal(uint32 crc, const char *buf, uint32 len)
{
if (NULL == buf)
return 0L;
crc = crc ^ 0xffffffffL;
while (len >= 8)
{
DO8(buf);
len -= 8;
}
if (len)
{
do {
DO1(buf);
} while (--len);
}
return crc ^ 0xffffffffL;
}
/* Function Name:
* rt_util_flashEnv_get
* Description:
* Get environment variable from flash
* Input:
* name - variable name
* buffLen - Buffer length of pValue.
* Output:
* pValue - variable value
* Return:
* RT_ERR_OK
* RT_ERR_FAILED
* Note:
* None
*/
int32 rt_util_flashEnv_get(char *name, char *pValue, int buffLen)
{
int32 ret = RT_ERR_OK;
#if defined(__BOOTLOADER__)
char *ptr = NULL;
ptr = getenv(name);
if(ptr == NULL)
{
return RT_ERR_FAILED;
}
osal_memcpy(pValue, ptr, buffLen);
#elif defined(CONFIG_SDK_KERNEL_LINUX)
#if defined(__KERNEL__)
#if (LINUX_VERSION_CODE > KERNEL_VERSION(2,6,20))
struct mtd_info *mtd_dev = NULL;
u_char *env;
int32 get_len;
mtd_dev = get_mtd_device_nm("BDINFO");
env = kmalloc((size_t)(mtd_dev->size), GFP_ATOMIC);
mtd_read(mtd_dev, 0, (mtd_dev->size), &get_len, env);
if (RT_ERR_OK != (ret = rt_util_flashVar_get(env, (mtd_dev->size), name, pValue, buffLen)))
{
kfree(env);
return ret;
}
kfree(env);
#else
if (RT_ERR_OK != (ret = rt_util_flashVar_get((char *)(SPI_FLASH_BASE + rtk_flash_partition_offset_get(FLASH_INDEX_LOADER_BDINFO)), rtk_flash_partition_size_get(FLASH_INDEX_LOADER_BDINFO), name, pValue, buffLen)))
return ret;
#endif
#else
if (RT_ERR_OK != (ret = rt_util_flashVar_mtd_get(CONFIG_BDINFO_MTD_INDEX, name, pValue, buffLen)))
return ret;
#endif
#else
/* non-linux */
#endif
return ret;
}
#ifdef __KERNEL__
/* Function Name:
* rt_util_flashVar_get
* Description:
* Get variable from specific flash area
* Input:
* addr - specific flash address
* len - specific flash area length
* name - variable name
* valueBufLen - Buffer length of pValue.
* Output:
* pValue - variable value
* Return:
* RT_ERR_OK
* RT_ERR_FAILED
* Note:
* None
*/
int32 rt_util_flashVar_get(char *addr, uint32 len, char *name, char *pValue, int valueBufLen)
{
char *buf = NULL;
char *data_ptr = NULL;
char *varname = NULL;
char *para = NULL;
int32 i = 0;
int32 nxt = 0;
int32 varval = 0;
uint32 calchksum = 0;
uint32 crc = 0;
uint32 size = 0;
char *read_addr = NULL;
size = len;
read_addr = addr;
buf = osal_alloc(size);
if(buf == NULL)
return RT_ERR_FAILED;
data_ptr = buf + 4; /* Skip CRC field */
for(size = 0; size < len; size++, read_addr++)
{
*(buf + size) = REG8(read_addr);
}
crc = REG32(addr);
calchksum = rt_util_crc32_cal(0, data_ptr, size - sizeof(crc));
if(calchksum == crc)
{
para = osal_alloc(size);
if(para == NULL){
if(buf != NULL){
osal_free(buf);
}
return RT_ERR_FAILED;
}
for (i = 0; *(data_ptr + i) != '\0'; i = nxt + 1)
{
osal_memset(para, 0, ENV_PARAMETER_LEN);
varname = data_ptr + i;
varval = 0;
for (nxt = i; *(data_ptr + nxt) != '\0'; ++nxt)
{
if (nxt > size)
{
if(buf != NULL){
osal_free(buf);
}
if(para != NULL){
osal_free(para);
}
return RT_ERR_FAILED;
}
if ('=' == *(data_ptr + nxt))
{
osal_memcpy(para, varname, (nxt - i));
if (0 == osal_strcmp(name, para))
{
varval = nxt + 1;
}
}
}
if (0 != varval)
{
if ((nxt - varval) >= valueBufLen)
{
osal_printf("%s,%d: Error! Insufficient buffer size %d. %d bytes is required!\n", __FUNCTION__, __LINE__, valueBufLen, (nxt - varval));
if(buf != NULL){
osal_free(buf);
}
if(para != NULL){
osal_free(para);
}
return RT_ERR_FAILED;
}
osal_memcpy(pValue, data_ptr + varval, nxt - varval);
pValue[nxt - varval] = '\0';
if(buf != NULL){
osal_free(buf);
}
if(para != NULL){
osal_free(para);
}
return RT_ERR_OK;
}
}
}
if(buf != NULL){
osal_free(buf);
}
if(para != NULL){
osal_free(para);
}
return RT_ERR_FAILED;
}
#endif
#if defined(CONFIG_SDK_KERNEL_LINUX) && !defined(__KERNEL__)
/* Function Name:
* rt_util_flashVar_mtd_get
* Description:
* Get variable from specific MTD block
* Input:
* mtd_idx - specific MTD index
* len - specific MTD length
* name - variable name
* valueBufLen - Buffer length of pValue.
* Output:
* pValue - variable value
* Return:
* RT_ERR_OK
* RT_ERR_FAILED
* Note:
* None
*/
int32 rt_util_flashVar_mtd_get(uint32 mtd_idx, char *name, char *pValue, int valueBufLen)
{
char *buf = NULL;
char *data_ptr = NULL;
char *varname = NULL;
char mtd_name[30];
int32 i = 0;
int32 fd = -1;
int32 nxt = 0;
int32 varval = 0;
uint32 calchksum = 0;
uint32 crc = 0;
uint32 size = 0;
mtd_info_t mtd_info;
char *para = NULL;
osal_memset(mtd_name, 0, sizeof(mtd_name));
osal_sprintf(mtd_name, "/dev/mtdchar%d", (mtd_idx*2));
if ((fd = open(mtd_name, O_RDONLY)) < 0)
return RT_ERR_FAILED;
/* Get MTD partition size information */
if (ioctl(fd, MEMGETINFO, &mtd_info) < 0)
{
close(fd);
return RT_ERR_FAILED;
}
size = mtd_info.size;
buf = osal_alloc(size);
if(buf == NULL)
{
close(fd);
return RT_ERR_FAILED;
}
data_ptr = buf + 4; /* Skip CRC field */
if (read(fd, buf, size) < 0)
{
close(fd);
if(buf != NULL)
osal_free(buf);
return RT_ERR_FAILED;
}
close(fd);
crc = ((buf[0] & 0xFF) << 24) + ((buf[1] & 0xFF) << 16) + ((buf[2] & 0xFF) << 8) + (buf[3] & 0xFF);
calchksum = rt_util_crc32_cal(0, data_ptr, size - sizeof(crc));
/* Check CRC */
if (crc != calchksum)
{
if(buf != NULL)
osal_free(buf);
return RT_ERR_FAILED;
}
para = osal_alloc(ENV_PARAMETER_LEN);
if(para == NULL){
if(buf != NULL)
osal_free(buf);
return RT_ERR_FAILED;
}
for (i = 0; *(data_ptr + i) != '\0'; i = nxt + 1)
{
varname = data_ptr + i;
varval = 0;
osal_memset(para, 0, ENV_PARAMETER_LEN);
for (nxt = i; *(data_ptr + nxt) != '\0'; ++nxt)
{
if (nxt > size)
{
if(buf != NULL)
osal_free(buf);
if(para != NULL)
osal_free(para);
return RT_ERR_FAILED;
}
if ('=' == *(data_ptr + nxt))
{
osal_memcpy(para, varname, (nxt - i));
if (0 == osal_strcmp(name, para))
{
varval = nxt + 1;
}
}
}
if (0 != varval)
{
if ((nxt - varval) >= valueBufLen)
{
osal_printf("%s,%d: Error! Insufficient buffer size %d. %d bytes is required!\n", __FUNCTION__, __LINE__, valueBufLen, (nxt - varval));
if(buf != NULL){
osal_free(buf);
}
if(para != NULL){
osal_free(para);
}
return RT_ERR_FAILED;
}
osal_memcpy(pValue, data_ptr + varval, nxt - varval);
pValue[nxt - varval] = '\0';
if(buf != NULL){
osal_free(buf);
}
if(para != NULL){
osal_free(para);
}
return RT_ERR_OK;
}
}
if(buf != NULL){
osal_free(buf);
}
if(para != NULL){
osal_free(para);
}
return RT_ERR_FAILED;
}
#endif
/* Function Name:
* rt_util_sysMac_get
* Description:
* Get MAC address from specific u-boot environment area and translate
* to rtk_mac_t format.
* Input:
* pMacAddr - mac address buffer
* Output:
* pMacAddr - mac address
* Return:
* RT_ERR_OK
* RT_ERR_FAILED
* Note:
* None
*/
int32 rt_util_sysMac_get(rtk_mac_t *pMacAddr)
{
int32 ret = RT_ERR_FAILED;
char macAddress[18] = { 0 };
int32 macStrLength = 18;
int32 index;
uint8 hex = 0, nibble_index = 0, byteValue = 0;
#if defined(__MODEL_USER__) || defined(CONFIG_SDK_MODEL_MODE)
return RT_ERR_FAILED;
#endif
if(RT_ERR_OK != (ret = rt_util_flashEnv_get("ethaddr", (char *)&macAddress, macStrLength)))
return ret;
for(index = 0; index < (macStrLength - 1); index++)
{
ret = rt_util_ascii2hex((char *)&macAddress[index],&hex);
if(ret == RT_ERR_OK)
{
if(nibble_index != 0)
byteValue = (byteValue << 4);
byteValue += hex;
if(nibble_index != 0)
pMacAddr->octet[index/3] = byteValue;
nibble_index++;
}else{
nibble_index = 0;
byteValue = 0;
}
}
return ret;
}
/* Function Name:
* rt_util_ledInitFlag_get
* Description:
* Get LED Init flag from u-boot environment area
* Input:
* None
* Output:
* ledModeInitSkip - the interger value of the definition in U-Boot env of ledModeInitSkip var.
* 1: true (SDK should skip LED init), 0: false
* Return:
* RT_ERR_OK
* RT_ERR_FAILED
* Note:
* None
*/
int32 rt_util_ledInitFlag_get(uint8 *ledModeInitSkip)
{
int32 ret = RT_ERR_FAILED;
char ledModeInitSkip_str[LEDMODEINITSKIP_LEN];
if (LEDMODEINITSKIP_INIT_VALUE != ledModeInitSkip_value)
{
*ledModeInitSkip = ledModeInitSkip_value;
return RT_ERR_OK;
}
ret = rt_util_flashEnv_get("ledModeInitSkip", ledModeInitSkip_str, LEDMODEINITSKIP_LEN);
if (RT_ERR_OK == ret)
{
uint8 tmp8 = LEDMODEINITSKIP_INIT_VALUE;
rt_util_ascii2dec(&ledModeInitSkip_str[0],&tmp8);
if (tmp8 == 1)
ledModeInitSkip_value = LEDMODEINITSKIP_YES;
else
ledModeInitSkip_value = LEDMODEINITSKIP_NO;
}
else
{
ledModeInitSkip_value = LEDMODEINITSKIP_NO;
}
*ledModeInitSkip = ledModeInitSkip_value;
return ret;
}
/* Function Name:
* rt_util_ascii2hex
* Description:
* Convert ASCII to Hex
* Input:
* pAscii - pointer to ascii charactor
* Output:
* pHexValue - hex value
* Return:
* RT_ERR_OK
* RT_ERR_FAILED
* Note:
* None
*/
int32 rt_util_ascii2hex(char *pAscii, uint8 *pHexValue)
{
char ch;
ch = *pAscii;
if((ch < '0' || ch > '9')&&(ch < 'A' || ch > 'F')&&(ch < 'a' || ch > 'f'))
return RT_ERR_FAILED;
if ((ch >= '0')&&(ch <= '9'))
*pHexValue = (uint8)(ch - 0x30);
if ((ch >= 'A')&&(ch <= 'F'))
*pHexValue = (uint8)(ch - 0x37);
if ((ch >= 'a')&&(ch <= 'f'))
*pHexValue = (uint8)(ch - 0x57);
return RT_ERR_OK;
}
/* Function Name:
* rt_util_ascii2dec
* Description:
* Convert ASCII to decimal
* Input:
* pAscii - pointer to ascii charactor
* Output:
* pDecValue - Dec value
* Return:
* RT_ERR_OK
* RT_ERR_FAILED
* Note:
* None
*/
int32 rt_util_ascii2dec(char *pAscii, uint8 *pDecValue)
{
char ch;
ch = *pAscii;
if((ch < '0' || ch > '9'))
return RT_ERR_FAILED;
if ((ch >= '0')&&(ch <= '9'))
*pDecValue = (uint8)(ch - 0x30);
return RT_ERR_OK;
}
#ifdef CONFIG_SDK_HW_PROFILE_PROBE_GPIO
#if defined(CONFIG_SDK_RTL8231)
/* Function Name:
* extGPIO_hwp_mdcSem_callback
* Description:
* Take/Give MDC/MDIO semaphore resource by lower layer in specified device.
* Input:
* unit - unit id
* type - semaphore type
* Output:
* None
* Return:
* RT_ERR_OK - OK
* RT_ERR_FAILED - Failed
* Note:
* The type value 0 mean lock the semaphore; 1 mean unlock the semaphore.
*/
static int32
extGPIO_hwp_mdcSem_callback(uint32 unit, uint32 type)
{
return RT_ERR_OK;
}
#endif
/* Function Name:
* rt_util_boardID_GPIO_envPrepare
* Description:
* Prepare get boardID by GPIO environment
* Input:
* N/A
* Output:
* N/A
* Return:
* RT_ERR_OK
* RT_ERR_FAILED
* Note:
* None
*/
static int32 rt_util_boardID_GPIO_envPrepare(void)
{
int32 preused_unit = HWP_GPIO_PROBE_USED_UNIT_ID;
uint32 chip_id, chip_rev;
int32 ret;
ret = drv_swcore_cid_get(preused_unit, &chip_id, &chip_rev);
if(ret != RT_ERR_OK)
return RT_ERR_FAILED;
HWP_CHIP_ID(preused_unit) = chip_id;
#if defined(CONFIG_SDK_DRIVER_GPIO)
RT_ERR_CHK_EHDL(gpio_probe(preused_unit), ret,
{RT_INIT_ERR(ret, (MOD_INIT), "unit %u gpio_probe fail %d!\n", preused_unit, ret);});
RT_ERR_CHK_EHDL(drv_gpio_init(preused_unit), ret,
{RT_INIT_ERR(ret, (MOD_INIT), "unit %u drv_gpio_init fail %d!\n", preused_unit, ret);});
#endif
#if defined(CONFIG_SDK_RTL8231)
RT_ERR_CHK_EHDL(rtl8231_probe(preused_unit), ret,
{RT_INIT_ERR(ret, (MOD_INIT), "unit %u rtl8231_probe fail %d!\n", preused_unit, ret);});
RT_ERR_CHK_EHDL(drv_rtl8231_init(preused_unit), ret,
{RT_INIT_ERR(ret, (MOD_INIT), "unit %u drv_rtl8231_init fail %d!\n", preused_unit, ret);});
if ((ret = drv_rtl8231_mdcSem_register(preused_unit, extGPIO_hwp_mdcSem_callback)) != RT_ERR_OK)
return RT_ERR_FAILED;
#endif
return RT_ERR_OK;
}
/* Function Name:
* rt_util_boardID_GPIO_envUninit
* Description:
* Uninit get boardID by GPIO environment
* Input:
* N/A
* Output:
* N/A
* Return:
* RT_ERR_OK
* RT_ERR_FAILED
* Note:
* None
*/
static int32 rt_util_boardID_GPIO_envUninit(void)
{
#if defined(CONFIG_SDK_RTL8231)
int32 preused_unit = HWP_DEFHWP_UNIT_ID;
int32 ret;
if ((ret = drv_rtl8231_mdcSem_unregister(preused_unit, extGPIO_hwp_mdcSem_callback)) != RT_ERR_OK)
return RT_ERR_FAILED;
#endif
return RT_ERR_OK;
}
/* Function Name:
* rt_util_boardID_GPIO_init
* Description:
* Get GPIO pin values by define
* Input:
* N/A
* Output:
* pPinValue - GPIO pins' value
* Return:
* RT_ERR_OK
* RT_ERR_FAILED
* Note:
* None
*/
int32 rt_util_boardID_GPIO_init(void)
{
int loop;
int unit = HWP_DEFHWP_UNIT_ID;
rtk_enable_t enable_flag;
drv_generalCtrlGpio_devConf_t gpio_conf;
drv_generalCtrlGpio_pinConf_t pin_conf;
rt_util_boardID_GPIO_envPrepare();
RT_LOG(LOG_INFO, (MOD_INIT), "GET board id by GPIO: Total PIN number = %d", board_probe_pin_example.total_gpio);
for(loop = 0; loop < board_probe_pin_example.total_gpio; loop++)
{
RT_LOG(LOG_INFO, (MOD_INIT), "\nPIN[%d], device = %d, address = %d, pin = %d, direction = %d",loop,board_probe_pin_example.pin[loop].gpio_device_id,board_probe_pin_example.pin[loop].address,board_probe_pin_example.pin[loop].gpio_id, board_probe_pin_example.pin[loop].direction);
if(board_probe_pin_example.pin[loop].gpio_device_id == GEN_GPIO_DEV_ID0_INTERNAL)
{
}
else if(board_probe_pin_example.pin[loop].gpio_device_id < GEN_GPIO_DEV_ID_END)
{
osal_memset(&gpio_conf, 0, sizeof(gpio_conf));
osal_memset(&pin_conf, 0, sizeof(pin_conf));
gpio_conf.direction = board_probe_pin_example.pin[loop].direction;
gpio_conf.ext_gpio.access_mode = EXT_GPIO_ACCESS_MODE_MDC;
gpio_conf.ext_gpio.address = board_probe_pin_example.pin[loop].address;
gpio_conf.ext_gpio.page = 0;
drv_generalCtrlGPIO_dev_init(unit, board_probe_pin_example.pin[loop].gpio_device_id, &gpio_conf);
pin_conf.ext_gpio.direction = board_probe_pin_example.pin[loop].direction;
pin_conf.direction = board_probe_pin_example.pin[loop].direction;
drv_generalCtrlGPIO_pin_init(unit, board_probe_pin_example.pin[loop].gpio_device_id, board_probe_pin_example.pin[loop].gpio_id, &pin_conf);
enable_flag = ENABLED;
drv_generalCtrlGPIO_devEnable_set(unit, board_probe_pin_example.pin[loop].gpio_device_id, enable_flag);
}
else
{
RT_LOG(LOG_WARNING, (MOD_INIT), " \nGPIO Device ID is out of range.\n");
return RT_ERR_FAILED;
}
}
return RT_ERR_OK;
}
/* Function Name:
* rt_util_flashVar_get
* Description:
* Get GPIO pin values by define
* Input:
* N/A
* Output:
* pPinValue - GPIO pins' value
* Return:
* RT_ERR_OK
* RT_ERR_FAILED
* Note:
* None
*/
int32 rt_util_boardID_GPIO_get(uint32 *pPinValue)
{
int loop;
int unit = HWP_DEFHWP_UNIT_ID;
uint32 probe_value = 0, pin_value = 0;
for(loop = 0; loop < board_probe_pin_example.total_gpio; loop++)
{
if(board_probe_pin_example.pin[loop].gpio_device_id == GEN_GPIO_DEV_ID0_INTERNAL)
{
drv_generalCtrlGPIO_dataBit_get(unit, board_probe_pin_example.pin[loop].gpio_device_id, board_probe_pin_example.pin[loop].gpio_id, &pin_value);
probe_value |= (pin_value << loop);
}
else if(board_probe_pin_example.pin[loop].gpio_device_id < GEN_GPIO_DEV_ID_END)
{
drv_generalCtrlGPIO_dataBit_get(unit, board_probe_pin_example.pin[loop].gpio_device_id, board_probe_pin_example.pin[loop].gpio_id, &pin_value);
probe_value |= (pin_value << loop);
}
else
{
RT_LOG(LOG_WARNING, (MOD_INIT), " \nGPIO Device ID is out of range.\n");
rt_util_boardID_GPIO_envUninit();
return RT_ERR_FAILED;
}
}
*pPinValue = probe_value;
RT_LOG(LOG_INFO, (MOD_INIT), "GET board id by GPIO: PINs value = 0x%08x", probe_value);
rt_util_boardID_GPIO_envUninit();
return RT_ERR_OK;
}
#endif