kernel: add preemption models

Introduce preemption model selection with PREEMPT_NONE as the default.
PREEMPT_NONE is the traditional Linux preemption model and also the best
choice for servers.

Signed-off-by: Thomas Richard <thomas.richard@bootlin.com>
Link: https://github.com/openwrt/openwrt/pull/21413
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This commit is contained in:
Thomas Richard 2026-01-05 13:46:52 +01:00 committed by Hauke Mehrtens
parent 794b4dee65
commit 5d720117f7

View file

@ -1492,3 +1492,72 @@ config KERNEL_WERROR
and unusual warnings, or you have some architecture with problems,
you may need to disable this config option in order to
successfully build the kernel.
choice
prompt "Preemption Model"
default KERNEL_PREEMPT_NONE
config KERNEL_PREEMPT_NONE
bool "No Forced Preemption (Server)"
help
This is the traditional Linux preemption model, geared towards
throughput. It will still provide good latencies most of the
time, but there are no guarantees and occasional longer delays
are possible.
Select this option if you are building a kernel for a server or
scientific/computation system, or if you want to maximize the
raw processing power of the kernel, irrespective of scheduling
latencies.
config KERNEL_PREEMPT_VOLUNTARY
bool "Voluntary Kernel Preemption (Desktop)"
help
This option reduces the latency of the kernel by adding more
"explicit preemption points" to the kernel code. These new
preemption points have been selected to reduce the maximum
latency of rescheduling, providing faster application reactions,
at the cost of slightly lower throughput.
This allows reaction to interactive events by allowing a
low priority process to voluntarily preempt itself even if it
is in kernel mode executing a system call. This allows
applications to run more 'smoothly' even when the system is
under load.
Select this if you are building a kernel for a desktop system.
config KERNEL_PREEMPT
bool "Preemptible Kernel (Low-Latency Desktop)"
help
This option reduces the latency of the kernel by making
all kernel code (that is not executing in a critical section)
preemptible. This allows reaction to interactive events by
permitting a low priority process to be preempted involuntarily
even if it is in kernel mode executing a system call and would
otherwise not be about to reach a natural preemption point.
This allows applications to run more 'smoothly' even when the
system is under load, at the cost of slightly lower throughput
and a slight runtime overhead to kernel code.
Select this if you are building a kernel for a desktop or
embedded system with latency requirements in the milliseconds
range.
config KERNEL_PREEMPT_RT
bool "Fully Preemptible Kernel (Real-Time)"
depends on (x86_64 || aarch64 || riscv64)
help
This option turns the kernel into a real-time kernel by replacing
various locking primitives (spinlocks, rwlocks, etc.) with
preemptible priority-inheritance aware variants, enforcing
interrupt threading and introducing mechanisms to break up long
non-preemptible sections. This makes the kernel, except for very
low level and critical code paths (entry code, scheduler, low
level interrupt handling) fully preemptible and brings most
execution contexts under scheduler control.
Select this if you are building a kernel for systems which
require real-time guarantees.
endchoice